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ABSTRACT Identifying those Mycobacterium tuberculosis latent-infected individuals most at risk of
developing active tuberculosis (TB) using routine clinical and laboratory tests remains a huge challenge in
TB control efforts. We conducted a prospective longitudinal study of clinical and laboratory markers
associated with the risk of developing active TB in contacts with latent M. tuberculosis infection.

HIV-negative household contacts (n=296) of pulmonary TB patients underwent monitoring of clinical
features, full blood cell counts, tuberculin skin text (TST) and chest radiography performed regularly during
18 months of follow-up. Paired statistical tests, a Kaplan–Meier analysis and Cox proportional hazard
modelling were performed on variables between contacts progressing or not progressing to active TB.

The appearance of TB disease symptoms in contacts was significantly associated with an elevated
peripheral percentage of blood monocytes (adjusted hazard ratio (aHR) 6.25, 95% CI 1.63–23.95; p<0.01),
a ⩾14 mm TST response (aHR 5.72, 95% CI 1.22–26.80; p=0.03) and an increased monocyte:lymphocyte
ratio (aHR 4.97, 95% CI 1.3–18.99; p=0.03). Among contacts having TST ⩾14 mm, a strong association
with risk of progression to TB was found with an elevated blood monocyte percentage (aHR 8.46, 95% CI
1.74–41.22; p<0.01).

Elevated percentage of peripheral blood monocytes plus an elevated TST response are potential
biomarkers for identifying contacts of TB patients at highest risk of developing active TB.
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Introduction
Tuberculosis (TB) is an aerosol-borne infectious disease caused by Mycobacterium tuberculosis resulting
in ∼8 million incident TB cases and 1.5 million deaths annually [1, 2]. However, most people with M.
tuberculosis infection remain asymptomatic and develop what is known as latent M. tuberculosis infection
(LTBI). The tuberculin skin test (TST) has traditionally been used to identify people with LTBI as they
benefit from preventive TB treatment [3]. Approximately one-third of the world’s population is thought to
have LTBI. Identifying and treating all LTBI cases seems impractical as the disease is concentrated in
countries with limited healthcare resources and because of the potential side-effects associated with
chemotherapy [4]. Up to 10% of people with LTBI may develop active TB in the decades after infection [5].
The risk is highest in the years immediately following infection and in immunosuppressed individuals
(e.g. people with HIV infection). Screening for the individuals most at risk of developing active TB from the
huge “at-risk” reservoir of LTBI cases is an important goal of TB control efforts worldwide [6]. The
prevalence of LTBI in close TB contacts is reported to be high: being a household contact is a serious risk
factor associated with progression to active TB [7, 8].

Studies have suggested that the subsequent risk of developing disease in close contacts of TB patients was
greatest among initially TST-sensitive individuals [9, 10]. However, TST has known limitations, including
cross-reactivity with bacillus Calmette–Guérin (BCG) vaccine and nontuberculous mycobacteria infections
[11]. Furthermore, the TST and the more complex interferon-γ release assays mostly identify all prior
infections and are poor at predicting LTBI that will subsequently go on to develop active TB [12, 13].
Thus, there is a dire need for simple, sensitive laboratory biomarkers for risk of progression of M.
tuberculosis infection to active disease [14].

The latent M. tuberculosis infection state is contained by an active immune response in the host initiated
by the pathogen, permitting a controlled persistence of the organism. Several studies indicate that
circulating immune cells are activated and recruited to the M. tuberculosis-infected lungs to form the
granuloma where the M. tuberculosis proliferation is controlled by an active interaction of lymphocytes
and infected macrophages [15–20]. In a previous study, we observed that peripheral white blood cell
(WBC) subpopulation ratios varied according to TB clinical status in a limited number of BCG-vaccinated
individuals from an area with a high TB burden [17]. More recently, observations from an HIV-positive or
HIV-exposed population in South Africa also suggest an association between the ratio of circulating
immune cells and the risk of TB disease [21, 22]. However, the hypothetical association of the peripheral
WBC rates with risk of TB disease progression in HIV-negative at-risk populations requires confirmation.
We conducted a prospective longitudinal cohort study to assess the role of peripheral blood WBC
subpopulation counts as biomarkers of risk of progression to active disease in an HIV-negative population
in a country with a high TB burden.

Methods
Study setting and recruitment
Close household contacts of patients with active pulmonary TB from Antananarivo (Madagascar) were
investigated. The index cases of these household contacts were adults (aged >15 years) with newly
diagnosed sputum smear positive and M. tuberculosis culture confirmed TB recruited from the main TB
centre in Antananarivo. The inclusion criteria for the household contacts were age >1 year, living in the
same house as the index case for ⩾6 months and asymptomatic for active TB. Asymptomatic was defined
as an absence of clinical symptoms and signs characteristic of TB and a negative chest radiograph at entry
to the study. Subjects who consented to an HIV test were enrolled and only HIV-negative individuals were
included in the study. To investigate baseline responses for M. tuberculosis nonexposed individuals, age-
and sex-matched community controls without symptoms or signs of TB and no known recent or sustained
contact with TB cases were recruited at the post-exposure rabies centre of Institute Pasteur de Madagascar
(Antananarivo, Madagascar).

Follow-up and monitoring of the household contacts was performed to detect TB symptoms for up to
18 months after inclusion: a clinical visit every 3 months for the first 6 months, and then a visit every
6 months for the remainder of the 18-month period. Any household contacts developing clinical
symptoms suggestive of TB and/or a result of abnormal TST (TST highly positive ⩾14 mm) were referred
to the anti-TB centre for additional investigations, including chest radiography. Individuals in whom the
diagnosis of TB was confirmed during the study were recorded and treated as TB patients. For all subjects,
epidemiological, clinical and bacteriological data were recorded prospectively on individual record forms.

Sample size calculation
The sample size calculation for the study was based on experience gained in an earlier study [23]. Briefly,
for equal-sized groups of TB progressors and nonprogressors, it would be possible to detect a difference
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corresponding to a log report (average rate progressors/average nonprogressors) equal to 1.82 (consistent
with the results of the study cited above) with a power of 90% and using an α error of 0.05. For groups of
uneven size (1 versus 4 for progressors versus nonprogressors), including 20 progressors and 80 (20×4)
nonprogressors, the ratio of 1.82 would be detectable with a power of 98% (if α=0.05). Applying this
calculation to a power of 90%, it would be possible to detect a ratio of 1.62. In the proposed study in
Madagascar, we wanted to include 100 index cases and expected (based on prior work) an average of five
of six household contacts per index case.

TST assays
Study physicians performed the TST (10 units; Tuberculin Purified Protein Derivative, Sanofi Pasteur,
Gentilly, France) at enrolment and after 3 months (M3) from inclusion. The results were read after 72 h.
Cutaneous induration ⩾5 mm in diameter was considered to be a positive TST response and induration of
⩾14 mm was considered to be highly reactive.

Whole blood cell count
Blood samples were drawn at inclusion and after 3 months. Blood samples were obtained from the index
cases at inclusion and after completion of their TB treatment (12 months). Venous blood samples were
drawn in EDTA anticoagulant Vacutainer tubes and stored at room temperature until the full blood cell
(FBC) count was performed, using an ABX Pentra 120 Retic haematology analyser (Horiba ABX SAS, Les
Ulis, France), according to the manufacturer’s instructions. Absolute cell counts were expressed as cells per
litre and percentage value per cell population (absolute cell count/total whole blood cell count × 100%).
The FBC count included information on red blood cells, platelets, total and differential WBC, which
included neutrophils, eosinophils, basophils, monocytes and lymphocytes. A certified physician validated
the formulas.

Statistical analysis
A comparison of the WBC subpopulations between the contacts that developed TB symptoms (symptomatic
household contact (sHC)) and the household contacts that remained healthy (hHC) was firstly performed by
paired sample analyses. Briefly, for every sHC, two age-matched hHCs were selected as controls for the
paired analysis. Comparison using the Wilcoxon test for paired sample analysis was performed. The p-values
were adjusted using the Bonferroni method to address multiple comparison concerns. Receiver operating
characteristic (ROC) curves were then performed using the paired case–control to define the best FBC
cut-off point for sensitivity and specificity. Risk of progression to active disease was estimated by performing
survival analyses. The Kaplan–Meier method and the Gehan–Breslow–Wilcoxon test were used to compare
the survival curves stratified by WBC rates. Cox proportional hazards models were generated to assess the
association between WBC counts and development of active TB. Scaled Schoenfeld residuals were used to
test the proportional hazards assumption of the Cox regression models and the Akaike information criteria
(AIC) were compared between the models. Statistical tests were performed with R software (www.R-project.
org). Tests were two sided and p<0.05 was considered as significant.

Ethical approval
The study was approved by the national ethics committee of the Ministry of Health in Madagascar
(authorisation number 038-SANPF/CAB). Participants were enrolled after appropriate counselling and
explanation of the study. Only participants who had given their written informed consent were enrolled.
Written informed consent was obtained from the legal guardians on the behalf of minors/child
participants involved in the study.

Results
Association of TST with risk of developing active TB in contacts
296 HIV-negative TB household contacts of active TB index cases (n=85) and 186 community controls
were identified (table 1). Of these contacts, no samples were obtained from six subjects, three declined
participation, one was a former TB case, while nine were lost to follow-up. BCG vaccination rate,
evidenced by BCG scar, was ∼98.54% (table 1). The global sex ratio (male/female) was 0.71.

At the end of the follow-up period, 12 (4.4%) out of the remaining 289 household contacts developed
symptoms consistent with active TB and were classified as sHC. The mean age of the sHC group was
lower than that of the hHCs (n=277, p=0.03; table 1). Nine (75%) out of 12 sHC were children aged
<16 years; however neither younger age nor sex was statistically associated with an elevated risk of
developing active TB.

When comparing the proportion of TST-positive responders (cut-off TST >5 mm) no correlation was
observed between the TST response and BCG vaccination status and there was no significant association
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between overall TST positivity and progression to active TB. However, it appeared that strong TST responders
were at higher risk of subsequently developing active TB. 10 (83%) out of the 12 sHCs had a TST induration
of ⩾14 mm at enrolment (table 1). A TST ⩾14 mm was associated with a significant risk of progression to
active disease in household contacts (age-adjusted hazard ratio 5.47, 95% CI 1.18–25.33; p=0.03).

Peripheral blood monocyte counts were significantly different between household contacts with
different TB outcomes during follow-up
Figure 1a depicts the peripheral leukocyte count at inclusion in all study groups. The subjects with known
exposure to M. tuberculosis (index cases and household contacts) showed a significantly higher level of
leukocytes (p<0.05) than community controls. However, when the WBC counts were stratified into blood
cell subpopulations, significant differences according to clinical status were observed.

A severe decrease in the lymphocyte count (p<0.001) (fig. 1c) associated with an increase of both
neutrophil (p<0.001) (fig. 1b) and monocyte rates (p<0.05) (fig. 1d) was globally observed in those study
participants with active disease compared to the asymptomatic individuals. Furthermore, an elevated
monocyte count was observed in the TB contacts compared to the community controls (p<0.001) (fig. 1c).
Those contacts that subsequently developed TB displayed a WBC pattern distinct from both the index
cases and the other healthy groups (community controls and hHC). The sHC study participants had
significantly elevated monocyte counts compared to both the community controls and hHC groups
(p<0.001) (fig. 1c).

Moreover, among those individuals with a TST ⩾14 mm, the sHC group segregated from the healthy
(community controls and hHC) individuals with regards to lymphocyte and neutrophil counts, and
segregated from the TB patients with regards to monocyte counts (online supplementary material).
Peripheral WBC populations that segregated the sHC (n=12) from the hHC (n=24) paired sample analyses
(table 2) showed that both the monocyte and lymphocyte absolute counts were significantly different in the
hHC when compared to sHC (p=0.04 and p=0.02, respectively). However, after Bonferroni adjustment, the
monocyte percentage was the only significant difference between sHC and hHC (p<0.01) (table 2).

Peripheral WBC counts in TB patients after successful anti-TB treatment
To assess whether the variations observed in the peripheral WBCs were associated with active TB, we also
measured WBC counts before and after treatment for TB in the index cases. Consistent with this
hypothesis, the total WBC count decreased post-treatment (p<0.01) (fig. 2). In particular, the neutrophil
and monocyte fractions in these treated patients were significantly reduced upon completion of treatment
when compared to their rates at enrolment (fig. 2). While lymphocyte counts increased slightly, this was
not significant in absolute terms (data not shown), but the decline in other cell types meant that the
increase was highly significant (p<0.001) (fig. 2) as a percentage of total WBCs. Thus, post-treatment, the
index cases showed a pattern (decreasing monocytes and neutrophils and increasing lymphocytes) that
suggested that they were moving towards a profile similar to that observed in healthy individuals.

TABLE 1 Characteristics of the study cohorts

Index cases Household contacts Community controls

Symptomatic Healthy

Subjects 83 12 277 186
Age years 34.7 (16–70) 16.6 (2–47) 22.9 (1–79) 25.3 (3–73)
Sex
Male 45 5 125 89
Female 38 7 152 97

BCG status
Yes 66 (79.5) 10 (83.3) 247 (89.2) 170 (91.4)
No 6 1 13 3
Undetermined 11 1 17 13

TST response
⩾14 mm 20 (24.1) 10 (83.3) 123 (40.4) 49 (26.3)
5–14 m 18 (21.7) 0 89 (32.1) 48 (25.8)
<5 mm 7 (8.4) 2 (16.7) 63 (22.7) 89 (47.9)
Undetermined 38 0 2 0

Data are presented as n, mean (range) or n (%). BCG: bacillus Calmette–Guérin; TST: tuberculin skin test.
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Assessment of risk of developing active TB according to peripheral blood monocyte rate and TST
As the monocyte percentage was the biomarker that showed most significant difference between sHC and
hHC (table 2), a ROC analysis was performed to identify a cut-off associated with elevated risk for
developing TB in the TB contacts. A cut-off point from the ROC curves of 7.5% monocytes in total

TABLE 2 Descriptive paired analysis of cohorts with regard to the development of tuberculosis
symptoms

sHC hHC p-value Bonferroni correction

Subjects n 12 24
Leukocytes 7.3 (4.1–9.8) 7.9 (3.2–14.9) 0.39 NS

Neutrophils
Absolute number 2.7 (1.2–5.9) 3.8 (0.8–10.2) 0.42 NS

Percentage 46.1 (13.0–100.0) 47.0 (12.8–100.0) 0.72 NS

Lymphocytes
Absolute number 2.2 (1.5–7.4) 2.85 (1.3–8.4) 0.02# 0.14
Percentage 37.6 (18.5–77.5) 37.8 (18.5–74.2) 0.47 NS

Monocytes
Absolute number 0.68 (0.38–1.04) 0.47 (0.19–0.86) 0.04# 0.28
Percentage 8.5 (6.4–16.5) 6.1 (2.7–12.5) <0.001# <0.01#

Data are presented as median (range), unless otherwise stated. sHC: symptomatic household contacts;
hHC: healthy household contacts; NS: nonsignificant. #: statistically significant values.
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FIGURE 1 Comparison of white blood cell count in the different clinical status groups prior to inclusion in the
study. a) Leukocytes; b) neutrophils; c) lymphocytes; d) monocytes. Data are presented as median and ranges
of absolute cell counts. CC: community controls; hHC: household contacts that remained healthy; sHC:
household contacts that developed tuberculosis (TB) symptoms in the course of follow-up; IC: TB index cases;
NS: nonsignificant. Mann–Whitney U-tests were used for the pairwise comparison of groups.
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peripheral blood mononuclear cells gave the best separation, and was associated with a sensitivity and
specificity of 75% (fig. 3).

TST ⩾14 mm and blood monocyte rate ⩾7.5% in the TB contacts remained associated with the highest risk
of developing active TB adjusted for lymphocyte count (table 3). Household contacts with both TST
⩾14 mm and monocyte rate ⩾7.5% were associated with a significantly elevated risk of progressing to active
TB (p<0.001 by the log-rank test) (fig. 4). The hazard ratio (HR) for developing TB symptoms in household
contacts with TST ⩾14 mm, monocyte:lymphocyte ratio and peripheral blood monocyte rate ⩾7.5% were
significantly high (table 3). To address the potential confounding of age and sex, these covariates were
included in Cox models. After adjustment for age, sex and blood lymphocyte count, household contacts with
both TST ⩾14 mm and peripheral blood monocyte rate ⩾7.5% remained significantly at risk of developing
active TB (HR 8.46, 95% CI 1.73–41.22; p<0.01), with the lowest AIC (table 3).

Discussion
Developing tests to determine which individuals with LTBI are at the greatest risk of progressing to active
TB would allow the identification and treatment of at-risk individuals and reduce the number of active TB
cases. This would be a major step forward for TB control programmes. We conducted this longitudinal
cohort study to examine the association of peripheral WBC counts with the risk of TB in HIV-negative
TB close household contacts. Our study shows the following findings.

Consistent with other studies [24–26] we confirmed that the prognostic power of a positive TST alone in
predicting LTBI progression to active TB disease is low. As TB is endemic in Madagascar and the coverage
rate is high for BCG vaccination, a weak TST response may not be specific for the detection of M.
tuberculosis infection, and it is to be expected that the healthy groups are heterogeneous; potentially
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containing both latently infected and uninfected individuals. We therefore used the more stringent
definition that a strong TST response with an induration in the TST of ⩾14 mm equated to LTBI [27].
Using this definition, it was also found that a strong TST response (⩾14 mm) was associated with a
significantly elevated risk for subsequent progress to TB among contacts, as described previously [28].

Household contacts with LTBI aged <16 years appear to be at slightly higher risk of progressing to active
TB in this population than adults. This is in contrast to observations from countries with a low TB burden
where the older age group was found to be at higher risk of developing TB [29]. However, this may reflect
the different age structure of our cohort, which had fewer elderly individuals, a common pattern in the age
structures of developing countries, or different patterns of transmission. Our data suggest that it may be
worth extending the World Health Organization recommendation for TB preventive treatment to
individuals aged from <5 to <16 years in countries that have a high TB burden and populations of similar
age distributions to that studied here.

An increased risk of subsequently developing TB was associated with elevated peripheral blood monocyte
rate and TST response ⩾14 mm among TB household contacts in this study. Differences in the peripheral
blood cell count have been shown to identify elevated risk of developing active TB in HIV-infected
individuals [13, 30]. However, while the monocyte:lymphocyte ratio seemed to give the best predictive
value in the HIV-infected individuals, observations from the present study in HIV-negative TB contacts
suggested that the peripheral blood monocyte rate alone can identify elevated risk of progression to active
TB, and when combined with a strong TST response gave a better risk association than the monocyte:
lymphocyte ratio according to the AIC obtained from the different models. The effect of HIV on
lymphocyte and leukocyte numbers [31] could explain the differences observed in these HIV-positive and
-negative populations.

TABLE 3 Parameters analysed to predict risk of progression to active tuberculosis in
household contacts

Crude
HR (95% CI)

p-value Adjusted
HR (95% CI)

p-value AIC

Age 0.97 (0.92–1.02) 0.23 0.98 (1.02–1.03) 0.93
Lymphocytes 0.99 (0.94–1.04) 0.66 0.97 (0.53–1.79) 0.94
TST ⩾14 mm 5.5 (1.2–25.3) 0.03# 5.72 (1.22–26.80) 0.03#

Monocytes ⩾7.5% 6.08 (1.61–22.91) <0.01# 6.25 (1.63–23.95) <0.01# 108.73
Monocyte/lymphocyte ratio 4.49 (1.19–16.94) 4.97 (1.30–18.99)¶ 0.02# 113.39
Monocytes ⩾7.5% + TST ⩾14 mm 8.78 (1.82–42.32) <0.01# 8.46 (1.73–41.22)+ <0.01# 80.81

n=274. HR: hazard ratio; AIC: Akaike information criterion per Cox model; TST: tuberculin skin test. #: statistically
significant; ¶: adjusted for age, sex and TST ⩾14 mm; +: adjusted for age, sex and lymphocyte count.

FIGURE 4 Kaplan–Meier estimates
for overall survival from diagnosis
of active tuberculosis (TB)
symptoms in the TB contacts. The
groups were divided based upon
peripheral monocyte percentages
and tuberculin skin testing.
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Monocytes are produced in the bone marrow from monoblasts and then circulate in the bloodstream and
reside in the spleen. The circulating monocytes are precursors for tissue macrophages that are implicated
in defence against a range of microbial pathogens [32, 33]. These cells are actively recruited from the
bloodstream to form the lung granuloma that contain M. tuberculosis infection, but it has also been
established that M. tuberculosis can inhibit the host immune response by multiple mechanisms, in
particular by inhibiting the phagocytic process and using the phagocytes as ecological niches where the
pathogen can replicate [32–35]. Chemokines such as monocyte chemoattractant protein-1 are suggested to
be involved in the massive monocyte recruitment to the lung to control M. tuberculosis infection [36, 37].
A role for type I interferons in the accumulation of myeloid cell populations in the lung and pulmonary
recruitment of inflammatory monocytes that lead to TB disease immunopathology has also been suggested
[38–40]. An ongoing infection with an inadequate adaptive immune response against the pathogen may
explain the increased percentage of blood monocytes observed in the TB contacts in our study prior to the
development of active disease.

It has already been reported that patients with active TB have an increased frequency of peripheral blood
monocytes compared to healthy individuals, and this study and others have shown that effective anti-TB
chemotherapy can reverse this [17, 41, 42]. The high count of peripheral monocytes also observed in the
TB contacts prior to progression to an active TB in the present study is consistent with the hypothesis that
this could be a biomarker for progressive TB [42, 43], and our study suggests that this is the case even
before the appearance of symptoms.

In summary, combining TST, a technique widely used to assess an M. tuberculosis infection in developing
countries, and the peripheral blood monocyte count, a technique available in many health centres, may serve
as a simple, cheap and practical test to identify those most at risk of progression to TB disease. If confirmed
in larger studies and in diverse populations, using both tests in TB contacts could avoid unnecessary
treatment and may improve the identification of individuals that need to be prioritised for treatment.
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