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ABSTRACT: Despite being regularly exposed to particulate matter during breath-
ing, which contains bacteria from the commensal flora in the nasopharynx and from
the environment, the healthy lung is kept sterile by efficient defence mechanisms.
Bacterial infections of the respiratory mucosa represent a dynamic interaction, to
which both host and bacterial factors contribute. 

The abnormal host defences associated with chronic respiratory infections (e.g.
cystic fibrosis and other forms of bronchiectasis) serve to emphasize their permis-
sive role. The bacteria that cause bronchial infections possess a wide array of poten-
tial virulence factors that contribute to their pathogenicity. Many of these factors
influence the mucociliary system, an important first-line defence mechanism. The
multiplication, spread and persistence of bacteria within the bronchial lumen, and
consequent damage to the epithelium, stimulates a chronic inflammatory response,
which also impairs mucociliary clearance and damages lung tissue. 

A greater understanding of host-bacterial interactions during mucosal infections
should in the future lead to the development of new therapies and treatment strate-
gies.
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The lung is regularly exposed to particulate matter dur-
ing breathing, which contains bacteria from the commen-
sal flora in the nasopharynx and from the environment.
However, in health, the lung is kept sterile by efficient de-
fence mechanisms. There are at least four possible out-
comes for bacteria inhaled into the bronchial tree: 1)
immediate clearance by first-line defence mechanisms,
such as mucociliary clearance [1]; 2) asymptomatic car-
riage, which occurs for example in some chronic bron-
chitis patients between exacerbations [2, 3]; 3) infection
which remains localized on the mucosa and spreads con-
tiguously through the airways inciting an inflammatory
response; and 4) invasion of the mucosa or parenchyma.
In health, bacteria are confined to the upper respiratory
tract. Their presence elsewhere, for example the middle
ear, the lower respiratory tract or the bloodstream, reflects
a failure of host defence mechanisms that could be as-
cribed either to the virulence of the bacterium and its abi-
lity to overcome the host's defences or to a deficiency of
one or more of these defences. The relative contribution
of host and microbial determinants need to be conside-
red, since mutuality is of the essence in understanding
bacterial pathogenesis.

The bacteria that cause bronchial infections are less
virulent, in the usually accepted sense of the word, than
those causing invasive diseases, such as pneumonia, that
can occur in previously healthy people. For example: non-
typable unencapsulated Haemophilus influenzae forms
part of the commensal flora in the nasopharynx and also
commonly causes lower respiratory tract infections in

chronic bronchitis; Pseudomonas aeruginosa is exclu-
sively an opportunistic pathogen that causes bronchial
infections in cystic fibrosis and bronchiectasis. The ab-
normal state of the host defences associated with these
chronic respiratory conditions serves to emphasize their
permissive role in the pathogenesis of bronchial infec-
tions [4]. The pathogenic mechanisms of bacteria that
colonize the respiratory mucosa need to be considered in
the context of how they facilitate persistence in the bron-
chial tree.

An abnormality in the host defences may be heredi-
tary, such as in cystic fibrosis or primary ciliary dyski-
nesia, or acquired, for example, after a viral infection or
with chronic cigarette smoking. The synergistic role of
viruses in predisposition to bacterial infection of the air-
ways has been investigated, and may be due to a num-
ber of possible mechanisms: loss of ciliated epithelial
cells; slowing of the ciliary beat; increase in mucus pro-
duction; alteration in mucus rheology and ion transport;
and change in epithelial cell receptors for bacterial adher-
ence [5, 6].

It has been shown in an animal model that the popu-
lation of H. influenzae within the upper respiratory tract
is often the progeny of the successful survival and repli-
cation of a single, or a very small number of organisms.
This was shown by experiments in which rats were chal-
lenged intranasally with a mixture of isogenic variants dif-
fering in their antibiotic resistance phenotype. Providing
that the inoculum was close to the dose required to col-
onize 50% of the population, more than half of the rats
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had nasopharyngeal cultures containing a pure growth
of one or the other, but not both, mutants [7]. This sug-
gests that the host nasopharyngeal environment is able
to suppress the survival and growth of all but a few bac-
teria. This may relate to, or depend on, the availability
of host cell attachment sites on mucus or epithelial cells
or the supply of nutrients. A challenging concept raised
as a the result of this experiment is that genetic and/or
phenotypic heterogeneity within the bacterial population
imparts a distinct survival advantage to only a few bac-
teria.

The bacteria that cause bronchial infections possess a
wide array of potential virulence factors (table 1) that
contribute to their pathogenicity. However, their failure,
in general, to infect the healthy bronchial tree means that
no single virulence factor is by itself omnipotent, but
that the different virulence factors should be viewed to-
gether as contributing to the "pathogenic personality"
which enables the bacterium to exploit deficiencies in
the host defences.

The mucociliary system is the most important first-
line defence mechanism of the bronchial tree against bac-
terial infection. In this review, we will discuss bacterial
interactions with the different parts of this system: mucus,
cilia, periciliary fluid and epithelial cells. We will mainly
use H. influenzae, P. aeruginosa and Streptococcus
pneumoniae, to illustrate the different pathogenic mech-
anisms.

Bacterial interactions with mucus

The first interaction of inhaled bacteria with the airway
mucosa is with mucus. H. influenzae, P. aeruginosa and S.
pneumoniae have a high affinity for mucus in vitro [26–
30], although this is not true for all bacteria that have
been investigated [31]. In a histological study of the
lungs of patients with cystic fibrosis, it was found that P.
aeruginosa predominantly associated with secretions, and
only adhered to the epithelial surface when there was  ero-
sion of, or damage to, the epithelium [32]. Similar observ-
ations (fig. 1) have been made with P. aeruginosa infection
of organ cultures [27]. Bacterial  adherence to mucus
probably involves both specific (adhesin-receptor) and
nonspecific interactions [28, 33–36]. In organ cultures,
P. aeruginosa are seen to grow as continuous sheets over
the mucus surface [27], and it has been shown that growth
in such biofilms is resistant to opsonophagocytic killing
by neutrophils [37, 38].

The depth of the mucous layer may influence its trans-
port by cilia. If the mucous layer is too thick, uncoupl-
ing may occur within it, so that the innermost part is
moved forward by the beating cilia but the outer part,
on which particles are trapped, remains stationary [39].
Thus, it may be significant that a number of bacterial
species causing bronchial infections elaborate extracel-
lular substances which stimulate mucus secretion in vitro
[8]. P. aeruginosa proteases and rhamnolipid have also
been shown to stimulate mucous production in vivo in
an animal model [9, 10].

The affinity of bacteria for mucus, and their relative
lack of adherence to healthy epithelium [27, 29, 30, 32]
may explain why they do not infect normal airways, which
have efficient mucociliary clearance. Whereas in chronic
bronchitis [39], bronchiectasis [40] and cystic fibrosis
[41], mucociliary clearance is delayed, giving bacteria
that have adhered to mucus time to produce virulence
factors (table 1) in sufficient quantities to establish the
infection. Bacterial infection attracts leucocytes into the
airways, many of which eventually degenerate releasing
deoxyribonucleic acid (DNA) into the secretions making
them more viscous and difficult to clear [42, 43]. Recent
studies have shown that the sputum of patients is poorly
transported by cilia compared to healthy mucus, and the
cause of this needs further investigation [44].
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Table 1.  –  Bacterial strategies to evade clearance from
the airways

Exoproducts that impair mucociliary clearance
Stimulate mucus production [8–10]
Slow and disorganize ciliary beat [1, 11–13]
Affect ion transport [14–17]
Damage epithelium [1, 11, 13, 17–19, 23]

Enzymes that break down local immunoglobulin [24, 25]
Proteases cleave antibodies to create nonfunctional "blocking
antibodies"
IgA1 proteases

Exoproducts that alter immune effector cell function [24]
Neutrophils: inhibit chemotaxis and phagocytosis, enhance
oxidative metabolism
Lymphocytes: impair cytokine production, activate suppressor
T-cells
Macrophages: reduce viability

Bacterial adherence to epithelium [20–22]
May be increased by environmental factors and in certain 
disease states
Increased by epithelial damage
Avoids clearance in secretions
Enhances the effect of toxins released in the microenvironment
of the epithelium
Increases the availability of nutritional factors for bacterial
growth

Avoid immune surveillance [24, 25, 37, 38]
Antigenic heterogeneity of the bacterial surface
Growth in biofilms
Microcolonies of bacteria surround themselves with a poly-
saccharide gel
Endocytosis, bacteria "hide" within epithelial cells  

IgA1: immunoglobulin A1. References are given in square brack-
ets.

Fig. 1.  –  Pseudomonas aeruginosa infection of human respiratory
mucosa in an organ culture caused patchy epithelial damage after 8 h.
P. aeruginosa adhered to mucus and damaged epithelium, but not to
normal epithelium.  (scale bar = 2.67 µm).



Bacterial interactions with cilia

Some bacteria produce factors which disturb the muco-
ciliary system by slowing and disorganizing the beating
of cilia [1]. This has the effect of delaying mucus clear-
ance, and also removes a physical barrier that prevents
bacteria binding with receptors on the epithelial surface.
Some of these cilioinhibitory factors have been charac-
terized: P. aeruginosa produces pyocyanin, 1-hydroxyphe-
nazine [11] and rhamnolipid [12]; H. influenzae produces
low molecular weight glycopeptides [4]; and S. pneumo-
niae produces pneumolysin [13].

We have investigated the phenazine pigments of P.
aeruginosa, pyocyanin and 1-hydroxyphenazine [11].
We first noted that 18 h culture filtrates of P. aeruginosa
slowed and disorganised human ciliary beating in vitro.
Prolonged incubation caused ciliary stasis and disruption
of epithelial integrity. Assays were developed to measure
the amount of known virulence factors in the filtrates,
and these levels were then correlated with ciliary slow-
ing activity. Only the phenazine pigment content of the
filtrates correlated. Gel filtration was then performed on
culture filtrates and yielded only one peak of ciliary slow-
ing activity, which co-eluted with the pigments. Finally,
the accumulation of pigment during bacterial culture cor-
related with an increase in ciliary slowing activity.

Pyocyanin and 1-hydroxyphenazine were extracted
from cultures and purified by high performance liquid
chromatography. They were then characterized by mass
spectrometry and, subsequently, synthesized [11]. 1-hydr-
oxyphenazine caused immediate onset of ciliary slowing
and dyskinesia, which was not associated with epithelial
disruption. Pyocyanin caused gradual slowing of ciliary
beating which was associated with epithelial disruption
later in the experiment. Both of these compounds have
been extracted from the sputum of patients infected by
P. aeruginosa at concentrations similar to those required
to slow ciliary beat in vitro [45], and both slowed muco-
ciliary transport in the guinea-pig in vivo [46]. A bolus
dose of 1-hydroxyphenazine slowed mucociliary trans-
port immediately, although it subsequently recovered,
whilst a bolus dose of pyocyanin had no immediate effect,
but later transport rate fell without any recovery. When
both compounds were introduced simultaneously, there
was an additive effect.

We have recently shown that the mechanism of action
of pyocyanin on ciliary beat is cyclic adenosine mono-
phosphate (cAMP) dependent [47]. The long-acting β2-
agonist salmeterol raises the level of cAMP in epithelial
cells [48], and partially inhibits the action of pyocyanin
in vitro [49]. Therefore, salmeterol may benefit patients
colonized by P. aeruginosa not only by its broncho-
dilating action but also by protecting cilia from the cAMP-
dependent effects of pyocyanin.

For efficient mucociliary transport to occur, cilia must
beat in the same direction in a co-ordinated fashion with
their neighbours [1]. We have recently shown that the beat
direction of cilia on biopsies taken from sites of infection
is disorientated [50]. This was particularly the case in
patients infected with P. aeruginosa, and the degree of
ciliary disorientation correlated closely with the delay in
mucociliary clearance. Furthermore, treatment with anti-
biotics and topical corticosteroids improved mucociliary
clearance and decreased ciliary disorientation. This study

suggests that the growth of cilia may be affected by bac-
terial infection, and this could be due to either bacterial
products or to the inflammation that they induce.

The effect of bacteria on ion transport and
epithelial cell tight junctions

The depth and constitution of the periciliary fluid, and
the ionic content of secretions, may both affect muco-
ciliary transport [1, 39, 44]. Regulation of these features
relies on active ion transport across a continuous epithe-
lial layer with intact tight junctions. Considerable atten-
tion has been focused upon the role of epithelial integrity
in bacterial diseases of the gastrointestinal tract, and spe-
cific bacterial toxins have been identified which inter-
fere with ion transport, e.g. Vibrio cholerae cholera toxin
which alters ion transport across the microvillar mem-
brane [51] and V. cholerae zonula occludens toxin, which
disrupts epithelial tight junctions [52]. These toxins, along
with those of other gastrointestinal tract pathogens, have
been linked to pathological features in vivo and their
mechanisms of action are beginning to be understood.
However, although a number of respiratory pathogens
have been associated with the disruption of tight junc-
tions in the epithelium and the endothelium (table 2),
very little information is available on the specific bacte-
rial factors involved or the mechanisms by which they
cause changes in the epithelium.

P. aeruginosa rhamnolipid has been shown to inhibit
transcellular ion transport in sheep tracheal epithelium
at low concentrations and to increase paracellular perme-
ability at higher concentrations by disrupting the epi-
thelial tight junctions [14–16]. Pseudomonas elastase has
also been shown to disrupt epithelial tight junctions, a
lesion that in this study was not reproduced by human
leucocyte elastase [17]. We have also observed the sep-
aration of epithelial tight junctions in human nasopha-
ryngeal organ cultures infected with H. influenzae [29]
and pneumolysin positive, but not pneumolysin nega-
tive, isogenic strains of S. pneumoniae [18].

Bacterial adherence and cell damage

The attachment of bacteria to mucosal surfaces is con-
sidered to be an important event in the pathogenesis of
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Table 2.  –  Bacteria that cause separation of tight junc-
tions of epithelium and endothelium

Bacteria Tissue

Pseudomonas aeruginosa Sheep tracheal epithelium [14]
Pseudomonas aeruginosa Canine renal epithelial cell

monolayer [17]
Pseudomonas aeruginosa Human nasopharyngeal 

epithelium [27]
Streptococcus pneumoniae Human nasopharyngeal 

epithelium [18]
Streptococcus pneumoniae Rat blood/brain barrier [54]
Haemophilus influenzae Human nasopharyngeal 

epithelium [29, 53, 55]
Haemophilus influenzae Rat and human blood/brain 

barrier [54, 56]

References are given in square brackets.



most infectious diseases, and has been shown to be essen-
tial to the production of epithelial damage in some cases
[57]. In a number of studies, bacteria have not adhered
well to normal epithelium in vitro, whilst epithelial dam-
age has been noted to increase bacterial adherence [27,
29, 30, 58, 59]. However, the source of the tissue used
in these experiments might be important, because non-
typable H. influenzae do not adhere to normal nasal
turbinate epithelium [29], but do adhere to normal epithe-
lium of adenoid tissue [53]. Cell damage might remove
defence mechanisms, such as ciliary beating, which would
otherwise prevent bacteria approaching the epithelial sur-
face, and might also expose new receptors to which bac-
teria can adhere on damaged cells, on newly exposed
nonluminal cell surfaces, and on cells that migrate and
differentiate to repair the damage [27, 58, 59].

A number of bacterial products have been shown to
damage epithelial cells, such as the protease enzymes of
P. aeruginosa [19]. However, in vivo and in vitro the
distribution of epithelial damage is patchy [18, 29, 32],
and much of the epithelium must be protected from the
effect of bacterial toxins. This is achieved in vivo partly
by antibodies that develop against bacterial toxins and
neutralize their effects. The influence of mucus on the
effect of bacterial toxins has not been studied, but this
may be another way in which the potency of bacterial
toxins is reduced.

Although, compared to gastrointestinal tract patho-
gens, little research has been undertaken into the mech-
anisms of action of the toxins produced by respiratory
pathogens, the mediation of cell damage by some respi-
ratory bacterial toxins has been elucidated. Bordetella
pertussis tracheal cytotoxin (TCT), a muramyl peptide
fragment secreted during bacterial growth, is responsi-
ble for the respiratory epithelial pathology of pertussis.
TCT has been shown to induce interleukin-1 (IL-1) pro-
duction by the hamster tracheal epithelium and exoge-
nous IL-1 reproduced the cytopathology caused by TCT
[60]. Both TCT and IL-1 induced high levels of nitric
oxide production by epithelial cells, and inhibition of
nitric oxide synthase prevented the destruction of cili-
ated cells in hamster tracheal organ cultures [61]. These
observations suggest that TCT triggers the production
of IL-1, which in turn stimulates nitric oxide production
leading to epithelial cell damage.

Intriguingly, this is not the only case in which host
factors have been implicated in the mediation of respi-
ratory disease pathology. Tumour necrosis factor (TNF)
and IL-1 are released in the respiratory tract in response
to a number of bacterial pathogens and/or their products.
These cytokines have been shown to induce the break-
down of tight junctions in the blood/brain barrier in vivo
[62], and a combination of anti-TNF and anti-IL-1 anti-
bodies completely neutralized cell separation in the vas-
cular endothelium that was induced by S. pneumoniae
[63].

Bacterial adherence to mucosal features (e.g. mucus,
cilia or epithelial cells) occurs via specific interactions
between adhesin structures on the bacterial surface and
receptors on the mucosal surface. Pili have been identi-
fied as an important adhesin of P. aeruginosa [20, 64],
but do not account for all of the adhesive properties of
this bacterium, and other adhesins such as exoenzyme S
[21] and alginate [22] have been identified. Multiple

adhesins on the bacterial surface and multiple mucosal
receptors have been found for most pathogens that have
been studied, and the number of adherence interactions
that can occur makes this an unlikely target for thera-
peutic intervention [65].

A number of oligosaccharides have been identified
which bind various bacteria, e.g. GalNAcβ1-4Gal sequen-
ces found in glycosphingolipids extracted from lung tis-
sue [66]. However, both the location of these receptors
in vivo, and the factors which might influence their acces-
sibility need further investigation. It has been suggested
that the number of potential binding sites for bacterial
pathogens can be influenced by environmental factors or
disease states. There is a special association between cys-
tic fibrosis and P. aeruginosa, and infection can occur
before there is significant lung damage [67]. Cystic fibro-
sis epithelial cells in primary culture bind approximately
twice the number of P. aeruginosa compared to normal
cells [68], and subsequent work has suggested that this
is due to alteration in the number of receptors for P.
aeruginosa adhesins on the cell surface [69]. Although
such an increase in P. aeruginosa binding seems unlikely
to be the sole explanation of the susceptibility of cystic
fibrosis patients to this infection, it may be important
when it occurs with slow mucociliary clearance [41].
Recently, the cystic fibrosis transmembrane regulator
(CFTR) has been implicated in the susceptibility of cys-
tic fibrosis patients to P. aeruginosa infection. The type
of defect in CFTR correlates both with the age of the
patient when P. aeruginosa colonization occurs [70], and
the number of P. aeruginosa binding to epithelial cells
of cystic fibrosis patients [71]. P. aeruginosa bind to the
glycolipids asialoganglioside 1 (aGM1) and aGM2 but not
to their sialylated homologues [66]. This research has
led to the hypothesis that glycosylation and sulphation
of superficial glycoconjugates may be altered in cystic
fibrosis, and that this could be due in some way to abnor-
mal intracellular chloride transport as a consequence of
abnormal CFTR function [72–74].

The effect of chronic inflammation on bacterial
interactions with the mucosa

The multiplication and spread of bacteria within the
bronchial lumen, and consequent damage to the epithe-
lium, stimulates the host to mount an inflammatory
response. If this fails to clear the bacteria and bacterial
infection continues, the inflammatory response becomes
chronic. Large numbers of activated neutrophils are at-
tracted into the airway [75] by host (e.g. complement fac-
tor 5a (C5a), leukotriene B4 (LTB4), interleukin-8 (IL-8))
and bacterial chemotactic factors [76]. Activated neu-
trophils do not differentiate between bacteria and bystand-
er lung tissue. They spill proteinase enzymes and reactive
oxygen species and, because of the large number of neu-
trophils present, lung defences, such as antiproteinases,
are overwhelmed. High levels of biologically active neu-
trophil elastase have been measured in the sputum of
chronically infected patients [77, 78]. Proteinase enzymes
[23] and reactive oxygen species [79] both cause epithe-
lial damage, and stimulate mucus production [80, 81].
These changes promote continued bacterial infection by
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impairing mucociliary clearance. Neutrophil elastase pre-
sent in secretions attracts additional neutrophils into the
airway by inducing production of the powerful chemoat-
tractant IL-8 by epithelial cells [82], and may impair
phagocytosis by cleaving complement receptors from
neutrophils [83] and complement components from bac-
teria [84]. Thus, a self-perpetuating cycle of events (fig.
2) may develop.

Another marker of chronic inflammation is the strong
antibody response to bacterial antigens, which can be
detected in serum, saliva and pulmonary secretions [24,
25]. Immune complexes are found in the bloodstream
and in sputum [85, 86], and probably have a role in caus-
ing lung damage as suggested by the strong correlation
between severity of lung disease and the titre of anti-
Pseudomonas antibodies in cystic fibrosis [87].

Whilst the major inflammatory cell in the airway lumen
of patients with chronic infection is the neutrophil, there
is also an expansion of the lymphoid cell population in the
bronchial wall. Many of these are T-cells with a suppres-
sor phenotype [88]. Although they could simply repres-
ent a secondary response to chronic antigenic stimulation,
mononuclear cells probably play an important role in
orchestrating the inflammatory response. There are high
levels of a number of cytokines in the sputum of chron-
ically infected patients, and the levels are higher than
those found in serum, which suggests local production.
Whether host cytotoxic T-cell-mediated lung damage also
occurs requires investigation [88].

Some bacterial toxins disable the inflammatory resp-
onse, for example by inhibiting phagocyte function or
cleaving antibodies, whilst others enhance inflammation,
for example by inactivating α1-antiproteinase or enhanc-
ing neutrophil oxidative metabolism [24, 25, 89]. Simil-
arly infection may result in the release of a mixture of
pro- and anti-inflammatory cytokines [90]. The relative
importance of these different bacterial and host factors

may change depending on the stage of the infectious
process. Bacterial factors which disable host defences
may compete with proinflammatory host factors early in
the infectious process, whereas later, when airway dam-
age has occurred and chronic bacterial infection is estab-
lished, proinflammatory bacterial factors may subvert the
host defences to promote continued bacterial infection by
increasing inflammation, which causes lung damage. In
these circumstances, the anti-inflammatory cytokines will
curtail the exuberant chronic inflammatory response and
in this way protect lung tissue.

In conclusion, bacterial pathogenicity in chronic infec-
tions of the respiratory tract must be examined in a wider
context, to include investigation of the conditions which
are permissive for their perpetuation in the respiratory
tract. Bacterial virulence factors and their interaction with
the host defences reflect a co-evolution of microbe and
host, particularly for pathogens, such as H. influenzae
in which man is the sole host. For bacteria such as P.
aeruginosa, that exist naturally in the environment, mech-
anisms that allow the organism to survive in nature may
fortuitously give it benefit during infection of man. For
example, alginate is produced in nature to help P. aerug-
inosa to attach to solid objects in watery environments
while in man it acts as an adhesin to epithelium, and
surrounds microcolonies of bacteria acting as a barrier
to phagocytes and antibiotics [24].

The biology of bacterial colonization and invasion of
the respiratory mucosa is complex, and the dynamic
nature of the host-bacterial relationship is evidenced by
the large number of bacterial products and the wide spec-
trum of their actions, and by the polymorphic nature of
the immune responses to bacterial infection. The encoun-
ters between bacteria and man are resolved in outcomes
which range from the establishment of a commensal rela-
tionship (carrier state) to potentially lethal disease, cir-
cumstances under which the role of specific microbial
determinants may differ and phenotypic expression may
vary. The effect of host cells and/or the local environ-
ment in the airway on the expression of different viru-
lence factors needs investigation. A greater understanding
of host-bacterial interactions should, in the future, lead
to the development of new therapies and treatment strate-
gies.
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