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ABSTRACT The aim of the study was to identify genetic variants associated with refined asthma

phenotypes enabling multiple features of the disease to be taken into account.

Latent class analysis (LCA) was applied in 3001 adults ever having asthma recruited in the frame of three

epidemiological surveys (the European Community Respiratory Health Survey (ECRHS), the Swiss Study

on Air Pollution and Lung Disease in Adults (SAPALDIA) and the Epidemiological Study on the Genetics

and Environment of Asthma (EGEA)). 14 personal and phenotypic characteristics, gathered from

questionnaires and clinical examination, were used. A genome-wide association study was conducted for

each LCA-derived asthma phenotype, compared to subjects without asthma (n53474).

The LCA identified four adult asthma phenotypes, mainly characterised by disease activity, age of asthma

onset and atopic status. Associations of genome-wide significance (p,1.25610-7) were observed between

‘‘active adult-onset nonallergic asthma’’ and rs9851461 flanking CD200 (3q13.2) and between ‘‘inactive/

mild nonallergic asthma’’ and rs2579931 flanking GRIK2 (6q16.3). Borderline significant results

(2.5610-7,p,8.2610-7) were observed between three single nucleotide polymorphisms (SNPs) in the

ALCAM region (3q13.11) and ‘‘active adult-onset nonallergic asthma’’. These results were consistent across

studies. 15 SNPs identified in previous genome-wide association studies of asthma have been replicated with

at least one asthma phenotype, most of them with the ‘‘active allergic asthma’’ phenotype.

Our results provide evidence that a better understanding of asthma phenotypic heterogeneity helps to

disentangle the genetic heterogeneity of asthma.
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Our data show that the genetic heterogeneity of asthma may be elucidated by clarifying asthma
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Introduction
Recent genetic studies, including meta-analyses of large-scale genome-wide association studies (GWAS),

have successfully identified several genetic loci that influence asthma susceptibility, providing a better

understanding of the pathogenesis of this complex disorder [1, 2]. However, only a small proportion of

heritability can be explained by the previously identified single nucleotide polymorphisms (SNPs)

associated with asthma [3, 4]. The missing heritability could partly reside in the phenotypic heterogeneity of

asthma, not taken into account in genetic studies.

Asthma is a heterogeneous disease constituting separate overlapping syndromes probably with different, but

as yet undefined, aetiologies and natural histories [5]. Childhood- and adult-onset asthma are among the

most commonly accepted phenotypes. Interestingly, 17q21 genetic variants were specifically associated with

childhood onset asthma in the French Epidemiological Study on the Genetics and Environment of Asthma

(EGEA), a result further confirmed by a large GWAS conducted within the GABRIEL consortium [1, 6].

Such results provided the first evidence for a genetic heterogeneity of asthma phenotypes. Unsupervised

models aiming to identify homogeneous subgroups of subjects have been applied to unravel the phenotypic

heterogeneity of asthma [7]. In adult asthma, these studies led to the identification of asthma phenotypes

that exhibited differences in clinical response to treatment, in clinical, physiological and inflammatory

parameters and in health-related quality of life [5, 8–10]. Although such refinement of asthma

characterisation may shed light on asthma genetics, no genetic association studies have been conducted

to date on asthma phenotypes defined by a clustering approach.

We aimed to identify genetic variants associated with cluster-derived asthma phenotypes in a large set of

subjects recruited in three large epidemiological studies: the European Community Respiratory Health

Survey (ECRHS), the Swiss Study on Air Pollution and Lung Disease in Adults (SAPALDIA) and the EGEA

(comprising the ESE consortium).

Methods
Further information is provided in the online supplementary material.

Study populations
The ECRHS study is a European population-based study of young adults with an 8-year follow-up (ECRHSI

(1991–1993) n518 356; ECRHSII (1999–2002), n510 933) [11]. SAPALDIA is a cohort study in the Swiss

population initiated in 1991 (SAPALDIA1, n59651) with a follow-up assessment in 2002 (SAPALDIA2,

n58047) [12]. The EGEA is a French case–control and family-based study with a 12-year follow-up

investigation (EGEA1 (1991–1995) n52047; EGEA2 (2003–2007), n51601) [13]. Similar protocols,

questionnaires and clinical examination were used in the three studies.

Cluster analysis in adult subjects with ever asthma
In ECRHSII and SAPALDIA2, subjects with asthma answered positively to ‘‘Have you ever had asthma?’’. In

EGEA2, asthma was defined by a positive answer to ‘‘Have you ever had attacks of breathlessness at rest with

wheezing?’’ or ‘‘Have you ever had asthma attacks?’’ or being recruited as an asthma case in chest clinics.

We first performed a latent class analysis (LCA) in 3001 adults who had ever had asthma (ECRHSII,

n51895; SAPALDIA2, n5465; EGEA2, n5641), irrespective of the availability of genotypes, to define

asthma phenotypes. 14 variables covering personal characteristics (age and sex), asthma characteristics (age

at asthma onset and asthma exacerbations), respiratory symptoms over the past 12 months, allergic

characteristics, lung function and bronchial hyperresponsiveness (BHR) were considered in the LCA model.

Asthma treatment was not included because of the lack of detailed information in the SAPALDIA survey,

but sensitivity analyses conducted in ECRHS and EGEA showed that the model including treatment leads to

similar clusters.

Genotypic data
Next, we conducted genetic analyses on subjects with genotypic information: 1689 subjects with asthma and

3452 controls without asthma. Genotyped data were available for almost the whole EGEA population.
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In SAPALDIA and ECRHS the sample included in the genetic analysis represents a nested asthma case–

control sample from the cohort (all subjects with asthma at baseline or follow-up with DNA and a random

sample of controls).

The subjects were genotyped within the framework of the European GABRIEL consortium. Genotyping was

carried out using the Human610 quad array (Illumina; San Diego, CA, USA), at the French national

genotyping centre (Centre National de Genotypage, Evry, France). After quality control of genotyping, as

previously described, the number of SNPs analysed was 499 138 [14]. The 39 candidate genetic loci included

were those identified in previously published GWAS for asthma [1, 2, 15–24]. If the reported SNP was not

genotyped in our data, the closest proxy (among SNPs in strong linkage disequilibrium (LD), assessed using

a web-based tool (SNP Annotation and Proxy Search; www.broadinstitute.org/mpg/snap) with r2 in the

European Ancestry (CEU) panel of HapMap project) was used [25].

Strategy of analysis
First, we aimed at identifying distinct adult asthma phenotypes by applying LCA, a latent variable model

that serves to cluster subjects into classes, as previously used in ECRHS and EGEA [10]. Models with different

numbers of latent classes were compared using the Bayesian information criterion (BIC) and when BIC were

of similar magnitude on the phenotypes’ prevalence (to avoid low-prevalent phenotypes in the prospective

GWAS analysis). Each subject was assigned to the latent class for which they had the highest membership

probability. To better characterise the phenotypes observed, smoking, treatment (in ECRHS and EGEA) and

blood eosinophil and neutrophil counts (in EGEA) were compared between LCA-derived phenotypes.

Next, in order to identify genetic variants associated with specific asthma phenotypes, a genome-wide

association analysis of each LCA-derived asthma phenotype compared to nonasthma controls was

conducted. Genetic associations under a genetic additive model were assessed using a logistic regression

model using robust sandwich estimation of the variance to model clustering of family genotypes, with

adjustments for sex, study (ECRHS, SAPALDIA and EGEA) and informative principal components for

within-Europe diversity (snpMatrix R package). The quantile–quantile plots are shown in online

supplementary fig. E1. l-values for phenotypes A, B, C and D were 1.10, 1.07, 1.11 and 0.95, respectively.

On the basis of the effective number of independent markers for the adjustment of multiple testing,

p,1.25610-7 was considered as significant in the GWAS [26]. We also reported all SNPs indicating

association signals, defined with two consecutive p-values ,10-6. We further investigated regions of ,20 kb

upstream and downstream of these loci using the imputed genomic data (estimated by the MACH software

(www.sph.umich.edu/csg/abecasis/MACH) and the HapMap2 Release 22 CEU reference sample). The

regional association plot for each region was performed using LocusZoom (http://csg.sph.umich.edu/

locuszoom/). In addition, nonparametric Fisher tests are presented to account for the effect of low minor

allele frequency in some SNPs (table E1). To statistically compare the SNP effects across phenotypes, a test

for heterogeneity was conducted using a multinomial regression model described in MORRIS et al. [27]. To

better interpret our GWAS findings on specific asthma phenotypes in light of the largest asthma GWAS

conducted so far on a simple asthma outcome, we provided the association observed in the meta-analysis in

the GABRIEL study, after exclusion of the three ESE consortium studies, for each SNP identified in our

GWAS. As a sensitivity analysis, we conducted the GWAS analysis using LCA probabilities (continuous

outcomes), to address the robustness of our results to the outcomes definition. We also investigated the

contribution of genetic loci identified for asthma by previous GWASs. In this candidate loci analysis,

p,0.01 was considered significant, since only a priori defined candidate genetic loci were tested [28].

Results
The population under study includes 3001 subjects with asthma (mean age 42.9 years; 44% male) and 3452

subjects without asthma (mean age 46.2 years; 48.9% male) (table 1). Half of the population reported

childhood-onset asthma (age ,16 years). Current asthma treatment was reported by 45.2% of the

population. In ECRHSII and EGEA2, 19% reported daily inhaled corticosteroid use at the time of the

survey. The population participating in the genetic analysis comprised older subjects, more males, more

asthmatics with early childhood-onset asthma and BHR compared to the population excluded from genetic

analysis. A description of the asthmatic population for each survey is presented in table E1.

Asthma phenotypes identified by LCA
The four-class model was retained (fig. E2). The mean highest posterior probability was high (82%),

varying from 80% for phenotype D to 83% for phenotypes A and B, indicating that participants were

assigned to classes with a fairly high probability. Phenotype A (18% of subjects), labelled ‘‘inactive/mild

nonallergic asthma’’ was characterised by individuals with no or few asthma symptoms at the time of

examination, low allergic disorders and BHR and high forced expiratory volume in 1 s (FEV1) (fig. 1 and
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table 2). Phenotype B (37% of subjects), labelled ‘‘inactive/mild allergic asthma’’ was characterised by

individuals with no or few symptoms at the time of examination but presenting with atopy and allergic

disorders. Phenotype C (27% of subjects), labelled ‘‘active allergic asthma’’, was composed of younger

individuals with childhood-onset asthma, atopy, asthma symptoms and BHR at examination. Phenotype D

(18% of subjects), labelled ‘‘active adult-onset nonallergic asthma’’, was characterised by subjects reporting

adult-onset asthma and asthma symptoms at examination, of whom few had atopy. Subjects belonging to

phenotype D had an FEV1,80% predicted more often than the other groups. In the EGEA dataset, this last

phenotype was significantly associated with higher blood neutrophil counts (geometric mean neutrophil

counts were 3801 cells?mm-3, 3584 cells?mm-3, 3956 cells?mm-3 and 4626 cells?mm-3 for phenotypes A, B,

C and D, respectively; p,0.0001).

The frequency of current smoking did not vary strongly across phenotypes (22.2–25.8%); however, subjects

included in phenotypes B and C, characterised by a younger age than phenotypes A and D, were more often

never-smokers (table E2). Subjects belonging to phenotypes A and B used asthma treatment in the past

3 months less often than others (table E2).

The total overall agreement between the latent classes identified and a simple classification defined by atopy

status and asthma attacks in the past 12 months (two highly discriminative variables in the LCA, often

TABLE 1 Description of the population included in the present analysis

Asthmatics
included in the LCA

Asthmatics with
GWAS data

Asthmatics without
GWAS data

Subjects n 3001 1689 1312
Age years 42.9¡11.1 43.8¡13.1 41.8¡7.7*
Male 44.3 46.2 41.8*
Age of asthma onset years
f4 19.0 21.0 16.4*
4–16 30.7 29.4 32.3
.16 50.3 49.6 51.3

Asthma attack in the past 12 months 39.7 37.8 42.1*
Atopy# 65.5 65.5 65.4
FEV1 ,80% predicted 13.9 14.6 12.9
BHR PD20 f1 mg 44.6 42.3 48.5*

Data are presented as mean¡SD or %, unless otherwise stated. LCA: latent class analysis; GWAS: genome-
wide association study; FEV1: forced expiratory volume in 1 s; BHR: bronchial hyperresponsiveness; PD20:
provocative dose causing a 20% fall in FEV1. #: assessed by skin prick tests or specific IgE. *: p,0.05
comparing subjects with and without GWAS data.
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collected in epidemiological surveys) was 82.4%, but varied widely between phenotypes (from 92.8% for

phenotype A to 61.1% for phenotype D).

GWAS results
Manhattan plots of association results for each asthma phenotype are presented in figure 2. We detected

two genome-wide significant associations between ‘‘active adult-onset nonallergic asthma’’ (phenotype D)

and rs9851461 on chromosome 3, flanking CD200 (p59.4610-9), and between ‘‘inactive/mild nonallergic

asthma’’ (phenotype A) and rs2579931 on chromosome 6 in GRIK2 (p52.7610-9) (table 3). Based on the

criteria of two consecutive SNPs at p,10-6, four chromosomal locations were detected. Pairwise LD

measures between SNPs of each of these genes showing multiple signals are presented in table E4. Of the 11

SNPs, three belonging or flanking the ALCAM gene located on chromosome 3 were associated with

phenotype D (active adult-onset nonallergic asthma; rs9842772, rs9288812 and rs1051124 with p-values of

2.5610-7, 6.6610-7 and 8.2610-7, respectively). The two latter SNPs were not in strong LD with rs9842772

(r250.39). Association signals were detected between phenotype A (inactive/mild non-allergic asthma) and

four SNPs in LOC401410 on chromosome 7 (rs10264996, rs10259042, rs10230811 and rs17162196), two

SNPs in LRRC6 on chromosome 8 (rs7834760 and rs13272108) and two SNPs in SBF2 on chromosome 11

(rs4576815 and rs7938647), with p-values ranging from 2.5610-7 to 9.6610-7. All SNPs detected at p,10-6

exhibited statistically significant heterogeneity of effects observed across the asthma phenotypes (p,0.002).

GWAS on the other two asthma phenotypes did not provide prominent association signals (table 3).

None of the SNPs identified in our GWAS showed any trend for association with asthma in the GABRIEL

TABLE 2 Characteristics of the population and probability of individuals presenting with characteristics in each of the
phenotypes identified by latent class analysis

Frequency of each
variable in the
whole sample

Phenotype

A B C D

Subjects n (%)
ECRHS 1895 (100) 328 (18) 648 (34) 533 (28) 386 (20)
SAPALDIA 465 (100) 143 (31) 176 (38) 62 (13) 84 (18)
EGEA 641 (100) 83 (13) 276 (43) 215 (34) 67 (10)
ESE consortium 3001 (100) 554 (18) 1100 (37) 810 (27) 537 (18)

Age o40 years 0.59 0.76 0.53 0.42 0.81
Male 0.44 0.33 0.54 0.48 0.29
Age of asthma onset years
f4 0.19 0.17 0.21 0.28 0.03
4–16 0.31 0.18 0.40 0.41 0.10
.16 0.50 0.65 0.39 0.31 0.87

Woken by coughing past 12 months 0.43 0.37 0.25 0.50 0.75
Asthma symptoms past 12 months

0 0.26 0.48 0.47 0.00 0.01
1 or 2 0.41 0.48 0.50 0.28 0.33
o3 0.33 0.04 0.03 0.72 0.66

Chronic cough or phlegm 0.20 0.15 0.09 0.23 0.45
Asthma attack past 12 months 0.40 0.06 0.09 0.81 0.75
Exacerbation# past 12 months 0.11 0.02 0.02 0.19 0.23
Eczema 0.55 0.51 0.56 0.63 0.45
Rhinitis 0.64 0.32 0.74 0.80 0.54
Atopy" 0.65 0.01 0.98 0.98 0.18
IgE o100 IU?mL-1 0.48 0.09 0.59 0.77 0.24
FEV1 ,80% predicted 0.14 0.08 0.09 0.17 0.25
BHR PD20 f1 mg 0.45 0.19 0.39 0.72 0.47

Phenotype A: inactive/mild nonallergic asthma; phenotype B: inactive/mild allergic asthma; phenotype C: active allergic asthma, more often
childhood onset and bronchial hyperresponsiveness (BHR); phenotype D: active adult onset nonallergic asthma, more often in females; ECRHS:
European Community Respiratory Health Survey; SAPALDIA: Study on Air Pollution and Lung Disease in Adults; EGEA: Epidemiological Study on
the Genetics and Environment of Asthma; ESE: ECRHS, SAPALDIA and EGEA; FEV1: forced expiratory volume in 1 s; PD20: provocative dose causing
a 20% fall in FEV1. #: defined as either hospitalisation for asthma or the use of oral steroids in the past 12 months; ": assessed by skin prick test or
specific IgE.
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meta-analysis after exclusion of the ESE studies (p.0.50) (table 3). GWAS analyses using the LCA

probabilities (continuous outcomes) led to the same conclusions (table E5).

The six loci detected at p,10-6 in the present GWAS were investigated using imputed data (fig. E3) and the

analyses were conducted in the pooled sample as well as separately in each study (fig. E4). Association

signals were consistent across studies for all SNPs, except for rs9851461 flanking CD200 and the active

adult-onset nonallergic asthma phenotype, showing stronger association in EGEA.

The two SNPs flanking ALCAM (rs9288812 and rs1051124) were significantly related to blood neutrophil

counts, with the alleles associated with a greater risk for active adult-onset asthma (phenotype D) also being

associated with an increased level of neutrophils (n5533, adjusted p-values50.01). No association was

detected between these SNPs and blood neutrophils among subjects without asthma and between blood

neutrophils and the two other SNPs reported for phenotype D.
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Replication of SNPs identified in previous asthma GWAS
13 SNPs located in IL1RL1, IL18R1, DPP10, TSLP, RAD50-IL13, HLA-DQ, IL33, RORA, ORMDL3/GSDMB

and IL12RB were replicated (p,0.01) with active allergic asthma (phenotype C), and heterogeneity of

association across phenotypes was significant (p-value for heterogeneity f0.01) for eight SNPs located in

IL1RL1, IL18R1, DPP10, TSLP, HLA-DQ and IL33 (table 4). Six SNPs located in IL1RL1, HLA-DQ, IL33

and SMAD3 were significantly associated with inactive/mild allergic asthma (phenotye B). A single SNP in

SRP9 (rs4653433) was associated with active adult-onset nonallergic asthma (phenotype D) (p-value for

heterogeneity50.003). None of the 39 SNPs were associated with inactive/mild nonallergic asthma

(phenotype A).

Discussion
Applying LCA, a model-based clustering approach, in a large sample of well-characterised subjects with

asthma led to the identification of four asthma phenotypes, mainly characterised by disease activity, allergic

status and age of asthma onset. Beside these main characteristics, sex, FEV1 and BHR also played a role in

the classification. GWAS on each asthma phenotype revealed a gene of potential interest in active adult-

onset nonallergic asthma, ALCAM (activated leukocyte cell adhesion molecule), with evidence of

heterogeneity of SNP effect across asthma phenotypes. All replication of asthma SNPs identified by previous

GWAS (located in IL1RL1, SMAD3, RORA, ORMDL3/GSDMB, DPP10, TSLP, RAD50-IL13, HLA-DQ, IL33

and IL12RB) were observed with the allergic asthma phenotypes, except one belonging to the SRP9 gene

found to be associated with active adult-onset nonallergic asthma. Taken together, our results support the

hypothesis that a better understanding of the phenotypic heterogeneity of asthma may help to disentangle

the genetic heterogeneity of asthma.

One strength of the study relates to the large sample of well-characterised adults with asthma, recruited in

three epidemiological settings using standardised protocols and clinical examination, allowing identification

of subgroups of subjects with shared characteristics of multiple disease features. As the results of the mostly

population-based study designs, the population includes both persistent and remittent asthma, and the

prevalence of severe asthma is low in this population. Interestingly, the asthma phenotypes identified by

LCA conducted on the pooled EGEA2, ECRHSII and SAPALDIAII population with asthma were highly

consistent with phenotypes previously identified separately in ECRHSII and EGEA2 [10]. As previously

discussed [5, 10], there are similarities with previous cluster-derived adult asthma phenotypes [8, 9] in the

identification of a group of subjects with early-onset atopic asthma and groups of subjects with benign

(mild) asthma. Furthermore, our phenotype D, mainly characterised by adult-onset nonatopic asthma,

shows similarities to phenotype 5 described by MOORE et al. [8] (groups showing higher airflow limitation

and exacerbation rate compared to the other phenotypes). Nevertheless, the phenotypes were defined at one

time-point and further work is needed in the context of longitudinal data to also account for disease

expression variability over time.

Although the phenotypic heterogeneity has been considered as a major limitation in understanding the

genetic determinants of asthma, few studies have examined to what extent a better phenotypic resolution

leads to identify new genetic determinants [3]. MOFFAT et al. [1] previously applied this approach with a

single asthma characteristic, age at asthma onset (childhood versus adult onset). LI et al. [17] performed a

GWAS on a population of well-characterised patients with severe or difficult-to-treat asthma and identified

the RAD50-IL13 region and the HLA DR/DQ region. These studies used stratification on a limited number

of traditional phenotypic traits and thus may have had little opportunity to unravel new associations. Our

study is the first to perform genetic analysis in a large population-based sample in which asthma phenotypes

were obtained in an unsupervised manner by means of LCA.

The lack of formal replication of the genetic association signals detected by this GWAS approach is a

limitation of our study. Nevertheless, the findings were supported by the association patterns observed

within the region and the consistency of the association across studies. Replication is particularly

challenging here, as there are very few large adult studies with similarly detailed phenotypic information

that would enable generation of the phenotypes we have used. The low agreement between the LCA-derived

asthma phenotypes and a simple classification based on atopy and the presence of asthma attacks in the past

12 months for phenotype D (active adult-onset nonallergic asthma) indicates that these two characteristics

are not sufficient to suitably define this phenotype of major interest, given our GWAS results. Overall our

GWAS association findings with specific asthma phenotypes have to be interpreted cautiously.

The sample size may be seen as a limitation of the study. However, this consideration of power has to be

discussed taking into account the improved phenotypic characterisation accounting for the disease

heterogeneity [30]. Large consortia on asthma genetics have been set up based on ‘‘poor’’ asthma phenotype

definition, which, in the context of a highly heterogeneous disease, may explain part of the missing
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heritability as some genetic effects might be diluted as the result of phenotype missclassification [3]. The

approach used in the present analysis, favouring phenotypic characterisation over sample size, could

therefore provide complementary insights to large asthma genetic studies. This is, in part, supported by the

lack of overlap between our GWAS results and the GABRIEL results. One limitation on the approach used

lies in the difficulty to directly compare findings across studies, since cluster-based phenotypes differ

between studies.

ALCAM, a member of the Ig superfamily, is a good asthma candidate gene. The ALCAM gene encodes the

CD166 antigen and was originally identified as a transmembrane receptor that is involved in T-cell

activation and may play a role in the binding of T- and B-cells to activated leukocytes. Altered expression of

ALCAM has been associated with differentiation state and progression in many tumours [31]. More

interestingly, ALCAM was identified as a common gene in three inflammatory diseases: Crohn’s disease,

rheumatoid arthritis and type 1 diabetes [32]. Furthermore, ALCAM interacts with ADAM17 (a disintegrin

and metalloproteinase 17), which is implicated in immune cell development and function and has been

shown to play a role in the epidermal barrier [33, 34]. Interestingly, a further SNP in the CD200 gene

(CD200 molecule), located in the same genomic region as ALCAM and encoding a protein also belonging to

the Ig superfamily, was exclusively associated with the active adult-onset asthma phenotype. Nevertheless,

this result in CD200 should be interpreted cautiously because of the low minor allele frequency of the

identified SNP. To date, there is no strong biological evidence to support the role of the four genes showing

an association with inactive/mild nonallergic asthma (GRIK2 (glutamate receptor, ionotropic, kainate 2,

6q16.3) involved in neurophysiological processes; LOC401410 (7q34); LRRC6 (leucine-rich repeat

containing 6, 8q24.22), possibly involved in spermatocytogenesis; and SBF2 (SET-binding factor,

11p15.4), possibly involved in biological processes related to bone and muscle growth [35]). The lack of

hits with phenotype C might be explained by limited statistical power.

None of the variants identified in previous asthma GWAS meet the GWAS significance level in the present

study. This might be explained by a lack of power of our study to identify shared genetic variants between

phenotypes compared to previous asthma GWAS, which considered the whole group of subjects with

asthma. Most of the replications (using the 0.01 threshold) were observed for the active allergic asthma

phenotype, including SNPs in or near IL1RL1, IL18R1, DPP10, RAD50-IL13, HLA-DQ, IL33, RORA,

ORMDL3/GSDMB and IL12RB. This may have occurred because childhood-onset asthma is more prone to

association with allergic phenotypes, and has been more intensively investigated in previous asthma GWAS.

Our results are consistent with a specific role of SNPs in ORMDL3/GSDMB with childhood-onset asthma

(stronger odds ratio observed with phenotype C), although the p-value for heterogeneity did not indicate

marked differences between the described phenotypes (possibly because of our smaller sample size). Our

results indicate a specific role of SNP rs1837253 in TSLP, a gene involved in the T-helper type-2 cell

immune processes in the airways of subjects with asthma, in active asthma as supported by the

heterogeneity in allelic odds ratios between phenotypes. This suggests that phenotypic heterogeneity may

partly explain the genetic heterogeneity previously identified by the GABRIEL study for this SNP.

Our results support the hypothesis that a better understanding of the asthma phenotypic heterogeneity

helps to disentangle the genetic heterogeneity of asthma. The genetic and environmental components of the

aetiology of asthma may be clarified by considering specific asthma phenotypes.
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