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Therapeutic implications of the

pathophysiology of COPD
P.T. Macklem

ABSTRACT: This review examines 18 studies published o30 yrs ago. They show that the earliest

manifestation of chronic obstructive pulmonary disease (COPD) is an increase in residual volume

suggesting that the natural history of COPD is a progressive increase in gas trapping with a

decreasing vital capacity (VC). The reduction in VC forces the forced expiratory volume in 1 s to

decline with it. This is aggravated by rapid shallow breathing leading to dynamic hyperinflation.

The earlier studies show that this is energetically opposite to a minimal work or force pattern and

is responsible for dyspnoea and exercise limitation.

This information, available for .30 yrs leads to three virtually untested hypotheses: 1) training

patients to breathe slowly and deeply transiently during exercise should decrease the work of

breathing, dynamic hyperinflation and improve exercise performance; 2) rapid shallow breathing

is caused by alveolar and bronchial inflammation that stimulates non-myelinated vagal C-fibre

afferents, which are known to cause this breathing pattern; and 3) if so, therapeutic efforts to

block these afferents might restore a slow-deep pattern and be beneficial, particularly in COPD

exacerbations.
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I
n this era of molecular, cellular and genetic
medicine many old contributions to the
pathophysiology of respiratory disease are

being forgotten and no longer taught. The
purpose of this paper is to review valuable old
knowledge, not often mentioned nowadays, in
order to develop new ideas about natural history,
pathophysiology and treatment of chronic obs-
tructive pulmonary disease (COPD). The defini-
tion of ‘‘old’’ is published o30 yrs ago. These
references are identified in the text and reference
list by an asterisk (*), of the 18 ‘‘old’’ references
Jere Mead was an author on six, two more than
any other author and five more than most. He
was my mentor in 1964–66 and if I have
accomplished anything, it is primarily because I
had the good fortune to be inspired by his
creativity, his commitment to excellence and his
ability to stimulate critical thinking. We had
serious arguments but they never descended into
quarrels. He was a most treasured friend and I
dedicate this article, in memoriam, to him (fig. 1).
I start with the natural history of COPD.

THE NATURAL HISTORY OF COPD
32 yrs ago FLETCHER and PETO [1*] pointed out
that in COPD there is a progressive, gradually

accelerating decline in forced expiratory volume
in 1 s (FEV1). This has been universally accepted
as the paradigm for its natural history. What they
did not consider was the cause of the decrease in
FEV1, which occurs because of a reduction in
forced vital capacity (FVC; FEV1 can never ex-
ceed FVC) and the FEV1/FVC ratio [2]. Both play
a role. The FEV1/FVC ratio decreases because of
loss of lung elastic recoil [3*, 4*], a sine qua non of
emphysema [5*], and because of obstruction in
small airways [3*, 4*, 6*], a sine qua non of COPD
[6*]. FVC decreases because gas trapping causes
residual volume (RV) to increase more than total
lung capacity (TLC).

RV increases due to both loss of elastic recoil and
small airways obstruction. All intrapulmonary
airways are held open by the radial traction of
alveolar walls attached to their outer surface [7*].
This is particularly important for the bronchioles
because it is the only agency which maintains
their patency. They are very compliant and
without radial traction they would easily col-
lapse. The magnitude of radial traction is
approximated by lung elastic recoil pressure
[7*], which decreases with lung volume. At RV,
elastic recoil pressure becomes zero and the small
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airways lose their support and close. With the progressive loss
of elastic recoil that characterises emphysema, closure occurs
at progressively higher lung volumes [8, 9*]. This is exacer-
bated by small airway obstruction, because the narrowed
lumen intensifies the effect of surface tension at its air-liquid
interface and because the airway smooth muscle shortening
necessary to close the airway becomes less.

Indeed it has been known for nearly 50 yrs that an increase in
RV is one of the first functional abnormalities in chronic
bronchitis [10*, 11*]. Thus gas trapping is a primary event.
However, it is known that in COPD RV is a dynamic
measurement; the longer the expiration the lower the RV.
Thus airway closure does not have to be complete, but
narrowing must be extreme. In all likelihood RV in early
COPD is a combination of airway closure and expiratory flow
limitation at low lung volumes, as it is in older healthy subjects
[12*]. Indeed, COSIO et al [13*] found that closing capacity was
significantly increased in smokers, although closing volume
was not. The addition of RV to closing volume made the
difference significant in smokers. CORBIN et al. [9*], in a 4 yr
follow-up study found no significant change in FEV1 and
FEV1/FVC ratio, which remained normal in smokers.
However, RV, TLC, and the RV/TLC ratio were significantly
increased while lung elastic recoil decreased, particularly at
high lung volumes, explaining the increase in TLC [9*]. This
increase allowed the vital capacity to remain the same or even
increase somewhat. This is why the FEV1 did not decrease.
Clearly, significant pathophysiological changes occur in the
early natural history of COPD before any change in FEV1 and
the FEV1/FVC ratio.

As the disease progresses and RV increases more than TLC,
VC falls and FEV1 falls with it. The primary event, gas
trapping, is a major reason for a progressive decline in FEV1.
Thus, a strong argument can be made that a change in
paradigm is desirable to understand the natural history of
COPD.

The new paradigm would emphasise the role of gas trapping,
with the decrease in FEV1 secondary to it as illustrated in the
schematic shown in figure 2. This is important because it
focuses therapy on allowing trapped gas to escape, rather than

improving FEV1. Indeed if trapped gas could escape so that
FVC improved, FEV1 would increase at constant FEV1/FVC.
But the important therapeutic benefit would result from the
decrease in trapped gas reflected in a decrease in RV and RV/
TLC ratio; the increase in FEV1 would be secondary.

A large decrease in trapped gas can be easily achieved in
explanted emphysematous lungs removed at transplantation
surgery by providing artificial pathways either through the
pleural surface or the bronchial wall directly into parenchymal
regions of gas trapping allowing trapped gas to escape [14, 15].
Transbronchial fenestration (airway bypass) has become a
promising new experimental treatment for emphysema [14]
currently being evaluated by a controlled, double-blind, multi-
centre clinical trial. Spiracles extending through the chest wall
into emphysematous lung tissue has also been performed in
patients with substantial benefit reported [16]. But if it were
possible to alter the breathing pattern in COPD, many of the ill
effects of gas trapping might be avoided.

THE BREATHING PATTERN IN COPD
When breathing is measured non-invasively [17] there is a
wide variation in the way patients with COPD breathe [18, 19].
Some breathe slowly and deeply while most breathe rapidly
and shallowly. The rapid shallow breathing pattern is strongly
associated with CO2 retention no matter how ventilation is
measured [18–24].

From an energetic point of view, rapid shallow breathing in
COPD is diametrically opposite to the pattern resulting in
minimal work. Because the lungs in COPD are hypercompliant
due to loss of elastic recoil, and the airways are obstructed, a
slow deep breathing pattern should result in minimal work.
Such a breathing pattern takes advantage of the small
pressures required to overcome the elastic recoil of the emphy-
sematous lung, while minimising the pressures required to
produce flow through the obstructed airways. This should
diminish dyspnoea and improve exercise performance but
very few patients breathe this way [18] (unpublished data).
Importantly, the faster one breathes in COPD, the less the

FIGURE 1. Jere Mead doing what he liked most.
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FIGURE 2. Schematic illustrating that the natural history of chronic obstructive

pulmonary disease is characterised by a progressive increase in gas trapping

measured by a progressive increase in residual volume (RV). A lesser increase in

total lung capacity (TLC) leads to a progressive decline in vital capacity (VC)

imposing a reduction in forced expiratory volume in 1 s (FEV1). FRC: functional

residual capacity; IC: inspiratory capacity.
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dynamic lung compliance becomes [25*]. As illustrated in
figure 3, dynamic compliance during rapid breathing can fall
to 0?05 L?cm-1 H2O [25*], values usually only seen in patho-
logically stiff lungs. The frequency dependence of compliance
leads to a progressive increase of respiratory muscle power
output as breathing rate increases; this aggravates dyspnoea
and limits exercise performance.

During exercise, expiratory muscles are recruited [26], expira-
tory flows increase and, in COPD, expiratory flow becomes
limited by dynamic compression of intrathoracic airways [27*].
The effects of flow-limitation on the ventilatory pump have
recently been reviewed [28]. They include excessive recruit-
ment of expiratory muscles in a vain attempt to increase
expiratory flow [27*, 29, 30]. The excessive expiratory
pressures result from slowing the velocity of shortening of
expiratory muscles resulting from flow-limitation and are
aggravated by CO2 retention [31, 32].This in turn can decrease
cardiac output [33]. The increased O2 cost of breathing can
become .50% of total body O2 consumption leading to
premature competition between respiratory and locomotor
muscles for the available O2 supply [34*, 35, 36]. This was
originally pointed out by LEVISON and CHERNIACK [34*] over
40 yrs ago, in a classic study that has been virtually ignored
ever since. Expiratory flow-limitation, by limiting the ability to
exhale, forces the patient to breathe at progressively increasing
lung volumes severely aggravating the gas trapping and the
impairment of lung function that it had already caused. The
resulting dynamic hyperinflation further increases the work of
breathing and intensifies dyspnoea dramatically when the
inspiratory reserve volume approaches zero [37, 38].

Clearly, rapid shallow breathing is a disastrous way for
patients with COPD to breathe. All the functional abnormal-
ities described above result directly from this breathing pattern
or are aggravated by it. Its pathophysiological effects explain
why COPD turns its victims into respiratory cripples impris-
oned by dyspnoea, severe exercise limitation and inability to
carry out routine tasks of daily living.

All of these devastating manifestations should be ameliorated
if patients breathed slowly and deeply. Is this possible?

THERAPEUTIC IMPLICATIONS
The respiratory muscles are the only skeletal muscles under
both brainstem and cortical control. If this were not so,
speaking would be difficult and eating, life-threatening. When
we are not thinking about how we breathe, our respiratory
muscles are under the control of the brainstem respiratory
centres. However, we can voluntarily breathe any way we
want by bringing breathing under cortical control. Hence it is
possible for patients with COPD to breathe slowly and deeply,
and a few of them naturally breathe that way [18]. But others
with faster respiratory rates have to think about their breathing
in order to have cortical control to breathe slowly and deeply.
It is unlikely that ventilation can be maintained this way
during all the waking hours and certainly not during sleep;
however, it might be possible to exert cortical control and ini-
tiate a slow deep breathing pattern transiently during exercise
and other activities limited by dyspnoea. Physiotherapy in
COPD has rarely focused on such a breathing pattern. A
PubMed search yielded only two hits [39, 40] for ‘‘slow deep
breathing, physiotherapy and chronic obstructive pulmonary
disease’’ and only one [39] dealing with chronic lung disease
for the key words ‘‘slow deep breathing, physiotherapy,
exercise’’. This paper pointed out that teaching patients to
breathe slowly and deeply provided temporary benefits, which
is precisely the aim in patients with COPD during exercise. A
physiotherapeutic trial to teach COPD patients to breathe
slowly and deeply during exercise must be undertaken to test
this hypothesis.

When external loads are applied to the respiratory system a
breathing pattern results that minimises the work or force of
breathing [41*–44*]. So why do patients with COPD breathe in
a way that aggravates the obstruction and creates an artificial
elastic load? Non-myelinated bronchial and/or alveolar vagal
C-fibre afferents might be the culprit. Indeed it would be
surprising if these afferents were not stimulated in COPD.
Alveolar and/or airway inflammation, characteristic features
of emphysema [45, 46], stimulate these fibres which cause
rapid shallow breathing, increased airway secretions and
bronchoconstriction [47–49], all of which are prominent
features of COPD. In experimental animals, C-fibre afferent
stimuation causes muscle weakness [49], but whether this
plays an aetiologic role in the skeletal myopathy of COPD [50]
has not been investigated. These fibres are also stimulated by a
transient respiratory acidosis [51]. If this is the case in COPD a
mild upper respiratory inflammatory reaction could be
responsible for almost all the features of an acute exacerbation
including increased airways obstruction, mucus hypersecre-
tion, worsening of rapid shallow breathing leading to acute
respiratory failure. This could set off a vicious circle in which
respiratory acidosis magnified all the effects of C-fibre
stimulation leading to increasing hypercapnia and so forth.

It is hardly likely that C-fibre stimulation, which reproduces so
many features of COPD is merely a coincidence. A reasonable
hypothesis can surely be made that afferent C-fibre stimulation
by inflamed alveoli and airways in COPD plays an important
role in excessive mucus secretion, airways obstruction, the
rapid shallow breathing pattern, skeletal myopathy and CO2

retention, particularly during acute exacerbations. In this
regard, it is interesting that local anaesthesia of the airways
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FIGURE 3. Lung compliance as a function of respiratory frequency in an

emphysema patient. Reproduced from [22] with permission from the publisher.
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in COPD changes the breathing pattern to a slower deeper one
[52].

The role of C-fibre afferents in COPD is apparently an
uninvestigated question. A PubMed search turned up no
references suggesting that COPD stimulates vagal C-fibres.
However, the evidence quoted above strongly indicates the
need for such research.

Could this be treated by intravenous infusion of a local
anaesthetic? This would have to be tested in an animal model
before trying in humans. However, if it worked it should
restore a slow deep pattern that should improve dyspnoea and
exercise performance while decreasing dynamic hyperinfla-
tion. It might also be an effective treatment of acute
exacerbations.

CONCLUSIONS
Old important publications should not be forgotten. Even after
many years they may still point to untried therapeutic
endeavours. This is not true just for the older articles I have
quoted. There are many classic old studies in the field of
respirology that are still highly pertinent.

By reviewing old literature about loss of elastic recoil [5*] and
peripheral airways obstruction [6*] in COPD and how these
lead to expiratory flow limitation [3*, 4*] the concept emerges
that when this occurs in COPD the work of breathing can
become excessive and lead to severe dyspnoea and impaired
exercise performance [27*, 34*]. Furthermore the loss of recoil
and airways obstruction lead to gas trapping [9*, 13*]
manifested by an increase in RV before there is any significant
change in FEV1 [9*–11*, 13*]. This suggests that the natural
history of COPD as a progressively accelerating fall in FEV1

[1*] needs to be changed to focus on gas trapping as the
primary event with progressively increasing amounts of
trapped gas as the major feature of COPD’s natural history.

The normal response to breathing with increased loads is to
minimise work or force [41*–44*]. This does not happen in
most patients with COPD who breathe rapidly and shallowly,
markedly increasing both the elastic and flow-resistive work of
breathing [25*], a pattern diametrically opposite to the normal
response.

These important old papers not only suggest that we need a
new paradigm for the natural history of COPD, but also
suggest three hypotheses: 1) physiotherapeutic programmes to
teach patients with COPD to breathe slowly and deeply during
transient periods of exercise should lesson dyspnoea and
improve performance; 2) many of the pathophysiological
manifestations of COPD including most of those that char-
acterise exacerbations are due to stimulation of airway and
alveolar vagal C-fibre afferents; and 3) if hypothesis 2) is valid
then effective treatment of rapid shallow breathing and
exacerbations might be achieved by intravenous administra-
tion of local anaesthetics. A literature search does not reveal
that these hypotheses arising from the older literature have
ever been seriously tested.
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