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Genetic variation as a predictor of smoking

cessation success. A promising preventive

and intervention tool for chronic respiratory

diseases?
M. Quaak*,#, C.P. van Schayck*, A.M. Knaapen# and F.J. van Schooten#

ABSTRACT: Tobacco smoking continues to be the largest preventable cause of premature

morbidity and mortality throughout the world, including chronic respiratory diseases such as

asthma and chronic obstructive pulmonary disease. Although most smokers are highly motivated

to quit and many smoking cessation therapies are available, cessation rates remain very low.

Recent research strongly suggests that variation in genetic background is an important

determinant of smoking behaviour and addiction. Since these genetic variants might also

influence the response to smoking cessation pharmacotherapies, it is likely that assessment of

genetic background could be a promising tool to guide selection of the most effective cessation

treatment for an individual smoker. Recently, it has been shown that genetic variants in the

dopaminergic system, opioid receptors, the bupropion-metabolising enzyme CYP2B6 and the

nicotine-metabolising enzyme CYP2A6 may play an important role in predicting smoking

cessation responses to nicotine replacement therapy and bupropion treatment. Despite the

progress that has been made, several challenges will still have to be overcome before genetically

tailored smoking cessation therapy can be implemented in standard clinical practice.
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A
lthough the risk of cigarette smoking is
well documented, tobacco smoking con-
tinues to be the largest preventable cause

of disease and premature death throughout the
world. It is estimated that there are currently still
over 1.2 billion smokers worldwide, and this is
expected to reach about 1.4–1.5 billion in 2010
and 1.6–1.9 billion by 2025 [1–4]. This is partly
because of an increase in the adult population,
and partly because of an increased consumption
in low- and middle-income countries and among
teenagers and females in high-income countries.
Conversely, smoking prevalence among males in
the high-income countries is declining [1, 4].

Inhalation of (cigarette) smoke has several dele-
terious effects on the airways, leading to and/or
influencing chronic respiratory diseases such as

asthma and chronic obstructive pulmonary disease
(COPD). According to the latest World Health
Organization estimates (in 2007), 300 million people
have asthma and 210 million people have COPD. In
contrast to other common smoking-related dis-
eases, such as cardiovascular disease and cancer,
chronic respiratory diseases are the only causes of
death that are still increasing. By 2015, about 30%
of the smoking-related deaths will probably be
caused by chronic respiratory diseases [5].

Cessation reverses most adverse effects of smok-
ing [6, 7]. Smoking cessation as early as possible
is important, but cessation at any age results in
significant life extension [6, 7]. Although the
majority of smokers are highly motivated to quit,
both smokers and healthcare practitioners are
confronted with high relapse rates after initial
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successful smoking cessation attempts. Despite progress made
in the (pharmacological) treatment of nicotine dependence, the
efficacy of available treatments is limited. As shown in table 1,
only 15–30% of smokers continue to abstain from smoking [8–
16]. Therefore, multiple quit attempts are often required.

Recent research strongly suggests that smokers vary in their
underlying genetic susceptibility to become addicted to
smoking [17–23]. Since pharmacogenetic therapies for smoking
cessation are usually directed at the modulation of the
pathways involved in smoking addiction, this genetic variation
will probably also influence the efficacy of these smoking
cessation therapies. Therefore, it seems that no medication will

show efficacy for all smokers and the overall effectiveness of

smoking cessation therapy might be increased if the therapy is

targeted at those smokers most likely to respond. Research on

the role of these inherited variations in the response to

pharmacotherapy for nicotine addiction and smoking cessation

may yield individualised treatments based on genotype. This

is expected to result in a more efficient use of anti-smoking

therapies, less frustration for smokers and more effort by

healthcare providers in stimulating smoking cessation

attempts. This will lead to increased cessation rates and,

ultimately, in reduced deaths from chronic respiratory diseases

caused by smoking.

TABLE 1 Efficacy of smoking cessation treatments

Treatment type Standard dose and duration Quit rate# (range) % 6–12 months follow-up OR

(95% CI)

Reference

Placebo 12.6 (0–46) 1.00" [9–16]

Behavioural counselling

Individual therapy Weekly sessions of 10–60 min for 2–16 weeks 15.3 (0–43) 1.65 (1.35–2.01)+ [9]

Group therapy 1–3 sessions?week-1 of 45 min–2 h for 2–14 weeks 15.1 (0–38) 2.17 (1.37–3.45)1 [10]

Anti-depressant therapy

Bupropion 150 mg?day-1 for 3 days plus 300 mg?day-1 for 7–

12 weeks

20.2 (3–43) 1.94 (1.72–2.19)e [11]

Nortriptyline 75–100 mg?day-1 for 10–12 weeks 22.6 (9–31) 2.34 (1.61–3.41)e [11]

SSRIs Dependent on type of SSRI used 15.1 (10–27) 0.90 (0.69–1.18)e [11]

Venlafaxine 225 mg?day-1 for 8 weeks 23.0 1.29 (0.58–2.88)e [11]

Nicotine replacement therapy

Gum 2–4 mg (10–15 doses?day-1 recommended) for 1–

4 months

23.7 (3–60) 1.66 (1.52–1.81)e [12]

Transdermal patch 21 mg for 4–6 weeks plus 14 mg for 2 weeks then

7 mg for 2 weeks

15.8 (7–38) 1.84 (1.65–2.06)e [12]

Inhaler/inhalator 6–16 cartridges?day-1 for 12 weeks (4 mg) 20.2 (11–28) 2.14 (1.44–3.18)e [12]

Spray 8–40 doses?day-1 (0.5 mg?nostril-1) for 8 weeks 24.5 (18–27) 2.35 (1.63–3.38)e [12]

Tablets/lozenges 9 lozenges?day-1 for 6 weeks plus 6-week tapering 17.1 (12–23) 2.05 (1.62–2.59)e [12]

Nicotine receptor partial agonists

Varenicline 0.5–1 mg 1–2 doses?day-1 for 6–12 weeks 21.8 (14–23) 3.22 (2.43–4.27)e [13]

Cytisine 1.5 mg tabs

days 1–3: 6 tabs?day-1;

days 4–12: 5 tabs?day-1;

days 13–16: 4 tabs?day-1;

days 17–20: 3 tabs?day-1

21.0 1.77 (1.30–2.40)e,## [13]

Opioid antagonists

Naltrexone 25–100 mg?day-1 for 4–12 weeks 17.0 (9–20) 1.34 (0.49–3.69)e [14]

Naloxone 10 mg?day-1 s.c.;

0.1–1.6 mg i.v.

[14]

Buprenorphine 4-8 mg?day-1 with ascending dosage for 10–

14 days

[14]

Other therapies

Clonidine

(antihypertensive)

Oral 150–750 mg?day-1 for 4–10 weeks;

transdermal 0.1–0.3 mg?day-1 for 6–12 weeks

28.4 (14–57) 1.89 (1.30–2.74)e [15]

Acupuncture 4–20 sessions for 2–4 weeks;

indwelling needle for 1–4 weeks

18.2 (6–40) 0.99 (0.68–1.44)e [16]

Laser therapy 12 sessions for 4 weeks 18.0 0.99 (0.56–1.75)e [16]

Electrostimulation 5–8 sessions of 20–60 min for 1–3 weeks 35.2 (27–40) 1.23 (0.72–2.09)e,"" [16]

OR: odds ratio; CI: confidence ratio; SSRI: selective serotonin reuptake inhibitor; tabs: tablets. #: weighted mean [9–16]; ": reference; +: versus ‘‘minimal contact’’ control;
1: versus ‘‘no intervention’’; e: versus placebo; ##: 2-yr follow-up; "": 6-month follow-up.
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The aim of the present review is to discuss the relevance of
genetic profiling of genes involved in mediating smoking
behaviour and addiction, as a tool to guide selection of an
individualised and more efficacious smoking cessation ther-
apy. In addition, the usefulness of this approach as a tool to
prevent smoking-related chronic respiratory diseases will be
discussed. The most important chronic respiratory diseases
caused by smoking will be reviewed, along with the candidate
genes contributing to the variation in smoking behaviour.
Finally, the current knowledge on smoking cessation therapy
will be discussed in the light of genetic background.

CHRONIC RESPIRATORY DISEASES ASSOCIATED WITH
SMOKING
Smoking has been shown to be the main risk factor in the
development of COPD and is known to influence the
progression and treatment of both COPD and asthma. In the
next section, a brief overview of the relationship of smoking
with COPD and asthma is provided.

COPD
COPD is a leading cause of morbidity and mortality world-
wide and results in an economic and social burden that is both
substantial and increasing [24–26]. Worldwide, COPD is the
12th most prevalent disease, the sixth most common cause of
death and one of the few common causes of death increasing in
incidence [24–26]. COPD is predicted to rise to the fourth most
prevalent disease and the fourth most common cause of death
by 2035 [5].

Smoking cessation is the most effective way to reduce the risk
of developing COPD, since smoking accounts for 75–90% of
COPD cases in the developed world, and exposure to tobacco
smoke leads to a higher risk of developing COPD and a higher
rate of disease progression [27, 28]. The rate of mortality from
COPD in nonsmokers is less than 10% of that of lifetime
smokers [29], and the number of deaths from COPD increases
depending on the number of cigarettes smoked [29]. Even
modest smoking (1–14 cigarettes?day-1) increases the rate of
mortality from COPD by at least eight times compared with
that of nonsmokers [29].

The impact of smoking cessation on respiratory symptoms,
lung function, airway hyperresponsiveness and inflammation
has been reviewed previously [30–33]. It has been shown that
when a smoker with declined lung function stops smoking,
they will not regain lung function already lost, but smoking
cessation is the only intervention proven to rapidly revert the
rate of decline in forced expiratory volume in one second
(FEV1) to the usual age-related decline, for both males and
females at all stages of COPD. Smoking cessation improves
long-term prognosis and also reduces respiratory symptoms
such as cough and sputum production. Furthermore, airway
reactivity seemed to improve in a 5-yr follow-up study, but
several cross-sectional studies showed no reduction in airway
reactivity to direct stimuli in ex-smokers compared with
current smokers. Additionally, although some indirect markers
of airway inflammation suggest a reduction in inflammation
after smoking cessation, ex-smokers seem to have persistent
airway wall inflammation and often remain symptomatic and
experience frequent exacerbations of their disease [30–33].

Furthermore, a pooled meta-analysis has shown that steroid
treatment is probably less effective in COPD patients who
continue to smoke [34].

Asthma
The prevalence of asthma increased worldwide during the last
quarter of the 20th century, particularly among children and
adolescents, making it the most common chronic illness of
childhood, with a prevalence varying from 0 to 30% in
different geographical areas. In many countries a gradual
increase in asthma mortality has been seen over the last 50 yrs
[35–37].

The health effects associated with exposure to passive smoking
have been widely studied and reviewed [38–45]. Passive
smoking, especially maternal smoking, in early childhood is
reported to be associated with an increased risk for the
development of asthma and more severe asthma symptoms, by
impairing pulmonary function, enhancing airway reactivity
and increasing pulmonary morbidity, leading to increased
emergency department visits, hospitalisation rates and medi-
cation usage, and longer recovery periods after hospitalisation
[38–45].

The health effects associated with active smoking have
received less attention, since asthmatics are generally believed
to be nonsmokers. However, the prevalence of smoking among
adolescents with asthma has consistently been demonstrated
to be equivalent to or even higher than rates among
adolescents without asthma [42, 43, 46, 47], which means that
about 15–35% of adult asthmatics are current smokers. Only a
few reviews on the association of active smoking and asthma
have been published [40–43, 47, 48]. Smoking asthmatics have
been shown to have worse symptom control than nonsmoking
asthmatics, about four times more asthma attacks, an acceler-
ated decline in lung function (FEV1) and increased pulmonary
problems, such as a higher chance of respiratory failure and
arrest, increased airway inflammation, more exacerbations, an
exaggerated bronchoconstrictor response, a higher mortality
rate after admission with a near-fatal asthma attack, and a
higher chance of hospitalisation for intubation. The severity of
these complications is positively related to the number of
cigarettes smoked [40–43, 47, 48].

In addition, several studies have found that the efficacy of
inhaled or oral corticosteroid treatment is also impaired in
smokers with chronic asthma [47, 48].

CANDIDATE GENES FOR THE VARIATION IN SMOKING
BEHAVIOUR
Tobacco smoking is believed to be a complex, multifactorial
behaviour with both genetic and environmental determinants.
While early reports suggested that the influence of heredity on
smoking was modest, more recent studies have found
significant genetic influences on several aspects of smoking
behaviour. It has been demonstrated that genetic factors
account for approximately 40–75% of the variation in smoking
initiation, 70–80% of the variation in smoking maintenance,
about 50% of the variance in cessation success and 30–50% of
the variance in risk of withdrawal symptoms [17–23, 49, 50].

Variations in several genes have been suggested to contribute
to smoking behaviour, and research has been focused on two

GENETICALLY BASED SMOKING CESSATION THERAPY M. QUAAK ET AL.

470 VOLUME 33 NUMBER 3 EUROPEAN RESPIRATORY JOURNAL



broad classes of candidate genes: 1) genes that may influence
the response to nicotine (e.g. nicotine metabolism, nicotinic
receptors) and 2) genes that may predispose to addictive
behaviour due to their effects on key neurotransmitter path-
ways (e.g. dopamine and serotonin) [23, 51–54].

In the next section, the most important candidate genes for the
variation in smoking behaviour will be briefly discussed.

Genes influencing the response to nicotine
Nicotine is the primary reward component in tobacco
products. Therefore, genes involved in the metabolism of
nicotine are biologically plausible candidates for genetic
studies of smoking behaviour, because they determine the
levels and persistence of nicotine in the body. It is hypothe-
sised that individuals with a high nicotine metabolism may
experience fewer adverse reactions to their first encounter with
nicotine and, therefore, may have a greater chance of
continuing smoking and becoming addicted. Conversely, slow
nicotine metabolisers may be less prone to initiate smoking
because they may experience more adverse effects and would
require fewer cigarettes to maintain nicotine titres at an
optimal level once smoking is initiated [55]. The major genes

responsible for the metabolism of nicotine are the hepatic
enzymes cytochrome P450 2A6 (CYP2A6) and cytochrome
P450 2D6 (CYP2D6; fig. 1).

Of these, CYP2A6 is believed to be the most important
predictor of the rate of nicotine metabolism, because it is
responsible for roughly 90% of the metabolic inactivation of
nicotine to cotinine [56, 57]. A number of studies have shown
that individuals carrying CYP2A6 variants that reduce the
enzyme activity, determined in vivo via the measurement of the
cotinine/nicotine or trans-39-hydroxycotinine/cotinine ratios
in blood or urine, are less tobacco dependent, smoke
significantly fewer cigarettes per day and have an increased
likelihood of quitting smoking [55, 58–62]. Other studies have
failed to detect these associations [63, 64] and a meta-analysis
reviewing several studies on CYP2A6 genotype and smoking
also found no association with smoking status and number of
cigarettes smoked [65].

In addition, several studies have investigated the effects of
CYP2D6 polymorphisms. Polymorphisms in CYP2D6 do not
seem to be major determinants of nicotine metabolism in
smokers except in ultrametabolisers (gene duplication) [66].
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This is probably because its catalytic activity towards nicotine
is negligible in the presence of functional CYP2A6.
Ultrametabolisers were found to be more likely to be heavy
smokers [67]. No relationship has been found for individuals
with a poor CYP2D6 metabolism [67, 68], although one study
did find a trend towards more poor metabolisers among males
in the nonsmoking group [67], and another study reported that
a poor CYP2D6 metabolism may reinforce smoking behaviour
in committed smokers [69].

The pharmacological effects of nicotine are mediated by the
activation of nicotinic acetylcholine receptors (nAChRs). High-
affinity nicotinic receptors mainly contain the a4 (CHRNA4)
and b2 (CHRNB2) subunits, and a4b2* (* indicates that another
subunit may be included) is the most frequently encountered
nicotinic receptor subtype. Several nAChR subunit genes have
been examined for associations with smoking status (e.g.
CHRNA4, CHRNA5, CHRNA7, CHRNB1, CHRNB2 and
CHRNB3), but the functional relevance of the investigated
variants in these genes is not yet known. Some evidence for an
association with tobacco dependence and smoking status for
variants in CHRNA5, CHRNA7, CHRNB1 and CHRNB3 [70–72]
has been provided. Evidence on the association of variants in
the CHRNB2 and CHRNA4 genes is inconclusive [73–78].

Genes involved in the dopamine pathway
The mesolimbic dopamine system has been proven to play an
important role in nicotine’s rewarding effects [79–82].

Therefore, investigators have examined the association
between smoking behaviour and variations in several genes
involved in the dopamine pathway, such as dopamine
receptors, the dopamine transporter and enzymes involved
in dopamine synthesis and metabolism (fig. 2).

Variants in several dopamine receptor genes (e.g. DRD1,
DRD2, DRD4 and DRD5) have been detected and studied in
relation to smoking behaviour. Overall, genotypes associated
with reduced dopamine receptor expression or function seem to
predict a higher chance of becoming a smoker, a younger age of
onset, and fewer and less successful quit attempts [83–92]. This is
probably because subjects with reduced numbers of dopamine
receptors may compensate for this deficiency by using nicotine to
increase brain dopamine levels. However, the evidence concern-
ing such results is still inconclusive [52, 93–95].

The dopamine transporter moves the dopamine released in the
synapse into a neuron, glial cell or astrocyte to terminate the
dopamine signal. A reduction in dopamine transporter levels,
resulting in less clearance and greater bio-availability of
dopamine, has been shown to be related to a lower chance of
becoming a smoker, a lower nicotine intake and longer periods
of smoking cessation [96, 97], but also, among African
American smokers, to increased craving [98]. Other studies
failed to replicate these results [99, 100].

Several enzymes, such as tyrosine hydroxylase (TH), 3,4-
dihydroxyphenylacetic acid decarboxylase (DDC), dopamine
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MAO: monoamine oxidase; DAT: dopamine transporter; DRD: dopamine receptor; COMT: catechol-O-methyltransferase; HVA: homovanillic acid; 3-MT: 3-methoxytyramine.

Green circles: dopamine.
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b-hydroxylase (DBH), catechol-O-methyl-transferase (COMT)
and monoamine oxidase (MAO)-A and -B, are involved in the
synthesis and metabolism of dopamine. Only limited data on
the effects of variations in these enzymes on smoking
behaviour are available. Associations between smoking and
variations in genes for MAO-A, MAO-B, DBH and DDC have
been found [101–107]. No associations for most variants in TH
have been reported; however, one variant seems to protect
against smoking [101, 108–110]. Contradicting results have
been found for an increased activity COMT variant: some
studies have found a positive association between the variant
and nicotine dependence and smoking cessation [111–114],
while others did not find an association [101, 112].

Genes involved in the serotonin pathway
The serotonin pathway is also under investigation in genetic
studies of smoking, for several reasons. First, nicotine has been
shown to increase the secretion of serotonin in the brain [115,
116]. Secondly, increased serotonin levels have been associated
with decreased food intake and weight gain, and have been
shown to have an antidepressant effect [115]. Furthermore,
lower serotonin re-uptake has been associated with several
behavioural traits (e.g. neuroticism, novelty seeking and
anxiety-related personality traits) that are related to an
increased incidence of smoking, increased nicotine depen-
dence and difficulty in quitting smoking [117, 118]. Candidate

polymorphisms include those involved in serotonin biosynth-
esis (e.g. tryptophan hydroxylase (TPH)) and serotonin re-
uptake (e.g. serotonin transporter (5-HTT)). Individuals homo-
zygous for a variant of TPH, with an unknown effect, have
been shown to be more prone to initiate smoking and to start
smoking at an earlier age, but no effect on progression to
nicotine dependence and smoking status has been found [119–
121]. Other studies have found that lower 5-HTT levels are
associated with increased neuroticism in nicotine dependence
[117, 118]. Another study was unable to detect an association
[122]. Conversely, in a Japanese population, increased 5-HTT
levels appeared to be associated with smoking [123].

INFLUENCE OF GENETIC VARIATIONS ON SMOKING
CESSATION TREATMENT
Since the genetic background of mechanisms influencing
smoking behaviour and addiction varies between smokers, it
is a logical step to assess whether this genetic variation also
determines the efficacy of smoking cessation treatment.
Research on the role of such inherited genetic variation in
the response to pharmacotherapy for smoking cessation opens
avenues for individually tailored smoking cessation treatment
based on genetic background. This might improve efficacy and
minimise toxicity and side-effects of the treatments.

Most research on the role of genetic variation on smoking
cessation pharmacotherapy has been directed to the two most
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widely accepted and licensed forms of smoking cessation
therapy: nicotine replacement therapy (NRT) [111, 124–140] and
the antidepressant bupropion (Zyban1) [129, 137, 141–149].

The relationship between genetic variation and efficacy of NRT
can be illustrated by the following. First, it has been shown that
smokers with genotypes associated with reduced dopamine
levels (reduced dopamine receptor availability or function,
high dopamine transporter levels and higher dopamine
metabolism) achieve better quit rates with NRT compared
with placebo [111, 124, 126, 127, 129, 134, 137, 139]. Secondly,
smokers who carry genetic polymorphisms associated with
reduced nicotinic receptor (and possibly also dopaminergic)
activity may experience greater benefit from nicotine spray
(NS) compared with transdermal nicotine patches (TN),
because of the greater rewarding effects of NS [133]. Thirdly,
smokers who have increased activity variants in the m-opioid
receptor (MOR) may have better success with the higher levels
of nicotine delivered by TN compared with the lower levels of
nicotine from NS [125, 136, 138], possibly only in combination
with variants in MOR-interacting proteins [138]. Fourthly, an
increased nicotine metabolism (determined primarily by
CYP2A6 genotype but probably not by CYP2B6 genotype)
lowers quit rates with TN [128, 130, 135]. Fifthly, variants in 5-
HTT do not seem to influence the response to NRT [131, 132].

The efficacy of the antidepressant bupropion also seems to be
related to a specific genetic background. First, genotypes
associated with increased dopamine availability (increased or
normal dopamine receptor availability or function, low
dopamine transporter levels and low dopamine metabolism)
predict a better response to bupropion [129, 137, 142–147, 149].

Secondly, bupropion also seems to be more effective in
smokers with a decreased bupropion metabolism (e.g.
CYP2B6 decreased activity variants) [141, 148], but less
effective in the presence of a decreased CYP2A6 metabolism
[148]. However, the influence of variants in the serotonin
pathway on bupropion efficacy has not yet been investigated.

Despite all the progress that has been made in unravelling the
pharmacogenetics of smoking cessation therapies, this research
is still in its infancy and many challenges still have to be
overcome before genetically tailored smoking cessation strate-
gies can be effectively integrated into standard clinical practice.

First, so far, most studies have investigated only single genes.
This approach will probably fail to fully determine the role of
genetic variation in the individual susceptibility to smoking
cessation therapies, since a large number of genes and
polymorphisms in these genes are likely to contribute.

Secondly, until now, the pharmacogenetics have been inves-
tigated for only a couple of smoking cessation therapies.
Newer compounds (e.g. varenicline), as well as current second-
line medications for smoking cessation (e.g. nortriptyline), will
also require investigation. Varenicline has been shown to bind
with high affinity and selectivity at a4b2 receptors, thereby
stimulating dopamine release while simultaneously prevent-
ing nicotine from binding (fig. 3). Therefore, varenicline is
expected to be more effective in smokers with genotypes
associated with reduced dopamine availability, in a similar
manner to NRT. Since nortriptyline has antidepressant proper-
ties, like bupropion, nortriptyline is expected to be more
effective in smokers with genotypes associated with increased
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FIGURE 4. Hypothetical model for genetically tailored smoking cessation therapy. NRT: nicotine replacement therapy; CYP2A6: cytochrome P450 2A6; CYP2B6:

cytochrome P450 2B6; CYP2D6: cytochrome P450 2D6; OCT2: organic cation transporter 2; TN: transdermal nicotine patch; NS: nicotine nasal spray.
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dopamine availability. However, differences in the metabolism
or elimination of these drugs, as well as pathways involved in
the mechanism of action, could make one drug more effective
than the other or result in fewer side-effects in certain
subgroups of smokers. In figure 4 it is hypothesised how
smoking cessation therapy might be genetically tailored based
on present knowledge.

Thirdly, genetic associations with tolerability and side-effects
should also be examined. It is likely that some individuals are
predisposed to have unusual reactions to drugs due to the
presence of certain genetic defects. For example, it has been
shown that variation in the DRD2 gene results in increased
side-effects and thereby decreased adherence among females
treated with bupropion [144]. Certain subgroups of individuals
may also exist who respond well to certain medications that
are normally not well tolerated. For instance, individuals with
a high nicotine metabolism may benefit from high-dose
nicotine patches without experiencing the generally occurring
side-effects.

Fourthly, a marked racial/ethnic diversity exists in smoking
behaviour (e.g. age of initiation, smoking rate and level of
dependence) and in the frequency of functional polymorph-
isms. To date, the vast majority of studies have been conducted
with Caucasians, simply to avoid population stratification.
Thus, the effect of genetic variants in other racial/ethnic
groups should be investigated as well.

Fifthly, some research suggests that pharmacotherapies might
work through different processes and/or be subject to different
genetic influences in males and females. Therefore, the effect of
genetic variations should be assessed for males and females
separately.

Furthermore, the findings should be validated across inde-
pendent trials, and prospective studies should be set up to
fully confirm the effect of the variants.

Finally, several practical, policy and ethical considerations
have to be addressed. Additional research should be con-
ducted to examine the benefits, risks and challenges of
conveying genetic information about smoking predisposition
to the patient, clinicians and the public. Economic analyses of
the cost-effectiveness of using genotype information to tailor
smoking treatment would also be necessary and appropriate
legal and regulatory frameworks should be set up to ensure
privacy and to protect against genetic discrimination.

CONCLUSIONS
Health promotion and health education regarding tobacco use
has made the public aware of the dangers of smoking and has
resulted in increased cessation rates, but many smokers still
continue to smoke, leading to high morbidity and mortality
rates, especially from chronic respiratory diseases such as
COPD and asthma. Although many of these smokers are
highly motivated to quit, only a small proportion of indivi-
duals respond to the various treatments that are currently
available to aid long-term smoking cessation. Since smoking
behaviour has been shown to be influenced by genetic
variations, it is expected that genetic variants might also
influence smoking cessation success.

Based on recent research, it seems that genetic variants in
several pathways related to smoking behaviour influence
success rates of smoking cessation therapies. The effects of
smoking cessation therapy might thus also differ considerably
in subgroups carrying certain genetic variants. Therefore, a
profile of genetic variants in these smoking-related pathways
could possibly be used to predict in advance which smoking
cessation therapy is likely to be most effective for an individual
smoker. This could lead to a more effective use of smoking
cessation therapies, resulting in fewer side-effects and
increased cessation rates, and ultimately in reduced morbidity
and mortality from chronic respiratory diseases such as COPD
and asthma.

However, before genetically tailored smoking cessation ther-
apy can be implemented in clinical practice, future studies
should investigate the effect of multiple susceptibility genes, as
well as their mutual interactions on several smoking cessation
therapies, in large-scale, comparable trials in different ethnic/
racial groups and different sexes. Additionally, prospective
trials should be set up to fully confirm the effect of the variants.
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