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ABSTRACT: Chronic obstructive pulmonary disease (COPD) is characterised by a
chronic inflammation in the pulmonary tissue. The disease is associated with a switch
from a self-limiting inflammatory response, mainly initiated by smoke inhalation, to a
chronic persistent inflammatory response after prolonged interaction with cigarette
smoke. The extent of the inflammatory reaction is correlated with the severity of the
disease.

Chronic inflammation in the pulmonary tissue is also associated with systemic effects.
These effects range from cytokine-induced priming of peripheral leukocytes, to muscle
wasting induced by cytokines such as tumour necrosis factor-a. Despite a general
consensus that chronic inflammation is a characteristic phenomenon of the disease,
surprisingly little is known regarding the underlying pathogenetic mechanisms.

A clear communication is present between the disease mechanisms in the pulmonary
compartment and peripheral tissues, leading to the concept of COPD as a systemic
inflammatory disease. This communication can be mediated by: 1) leakage of reactive
oxygen species and stress-induced cytokines directly into the peripheral blood, 2)
(pre)activation of peripheral blood leukocytes that can result in aberrant homing and
activation of inflammatory cells in distant tissues, and 3) the liberation of pro-
inflammatory mediators by leukocytes and/or stromal cells present in the pulmonary
tissues during progression of the disease.

The current authors hypothesise that the occurrence of a chronic inflammatory
response after prolonged interaction of the pulmonary tissue with cigarette smoke
causes aberrant homing of leukocytes to the tissue and delayed apoptosis. This leads to
the autonomous characteristic of the inflammatory response in patients with chronic
obstructive pulmonary disease.
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Chronic obstructive pulmonary disease (COPD) is a major
worldwide health problem with an increasing prevalence and
incidence [1, 2]. After many years of investigation, the
pathophysiological processes leading to COPD are still
poorly defined. In 1977 FLETCHER and PETO [3] defined

COPD as a chronic airflow obstructive and hypersecretory
disorder with a strong relation to smoking. Since then,
chronic irreversible airflow obstruction is a common hallmark

At risk

in all definitions subsequently produced by the British
Thoracic Society, the European Respiratory Society and the y

American Thoracic Society [4-6]. An important change in the ,
definition is found in a more recent statement by the National Mild COPD

Heart, Lung and Blood Institute (NHLBI)World Health
Organization (WHO) Global Initiative for Chronic Obstruc- l
tive Lung Disease (GOLD). In this consensus report COPD is

defined as "a disease state characterized by airflow limitation

that is not fully reversible. The airflow limitation is usually Moderate COPD

both progressive and associated with an abnormal inflamma-
tory response of the lungs to noxious particles and gases" [7]. l
It is now recognised that the inflammatory response of the

lungs is an important field of research necessary for under-

standing the disease processes, and for the subsequent Severe COPD

development of novel therapies for COPD.
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Symptoms such as chronic cough and sputum production
slowly increase, and can be recognised in all stages of COPD.
Often COPD is diagnosed at the time that patients begin to

Normal spirometry/chronic symptoms
(cough, sputum production)

FEV1/FVC <70% FEV1 <80% predicted.
With or without chronic symptoms
(cough, sputum, production)

FEV1/FVC <70%, 30% <FEV1 <80% predicted.
With or without chronic symptoms
(cough, sputum, production, dyspnoea)

FEV1/FVC <70%, FEV1 <30% predicted,
or the presence of respiratory failure or
clinical signs of right heart failure

The course of the disease can be divided into four different
clinical stages according to the classification of the GOLD
guidelines (fig. 1) [7]. The first two stages (at risk and mild
COPD) are subclinical and hardly noticed by the patients.

Fig. 1.-Classification of chronic obstructive pulmonary disease
(COPD) by severity according to the Global Initiative for Chronic
Obstructive Lung Disease (GOLD) guidelines [7]. FEVi: forced
expiratory volume in one second; FVC: forced vital capacity.
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suffer from coughing, dyspnoea and a decrease in exercise
tolerance. In these patients with moderate-to-severe COPD
the disease has a considerable impact on the quality of life and
daily activities. Apart from the gradual progression, COPD is
associated with intermittent exacerbations. These exacerba-
tions can be life threatening and patients are frequently
admitted to the hospital. Exacerbations of COPD can be
caused by different aetiologies such as infections with viruses
and bacteria, or common pollutants and are associated with
inflammatory changes within the respiratory tract [8-11].

The most important risk factor leading to the development
of COPD is cigarette smoking. Fifteen to 20 per cent of
all smokers develop clinically symptomatic COPD during
their lifetime [12, 13]. Exposure to occupational dusts and
chemicals, infections, and outdoor and indoor air pollution,
are also contributing factors to the development of COPD [7].
For instance the occurrence of COPD among housewives in
Mexico, Saudi Arabia, India and Iran can be explained by the
exposure of indoor smoke due to domestic cooking fuels
[14-17].

Damage model

For many years, studies regarding disease pathogenesis in
COPD were focused on the pathophysiological changes
within the airways and alveoli. As stated above, the most
important factor leading to COPD is cigarette smoking.
Several processes can be initiated due to smoking of
cigarettes. Firstly, the development of direct damage of the
lung tissue due to noxious particles in cigarette smoke and
thermal injury. Secondly, direct activation of macrophages,
neutrophils and resident cells by smoke particles and/or by the
induction of repair processes [18-20]. Smoking of cigarettes
induces damage of the lungs, which is followed by "normal"
repair processes [21]. When the "normal" repair processes are
hampered, aberrant tissue responses in the lungs can occur,
resulting in the development of several features of the
characteristic pathology seen in COPD [21, 22]. Two main
hypotheses have been postulated explaining this aberrant
tissue response: 1) an imbalance in the oxidant-antioxidant
system, and 2) an imbalance between the action of proteases
and antiproteases.

The imbalance of the oxidant-antioxidant system is a well-
known effect of smoking, and is associated with damage to
the lungs. Normally, a delicate balance exists between the
toxicity of oxidants and the protective antioxidant defence
system [23]. Cigarette smoke can directly deplete antioxidants
thereby shifting the balance towards oxidant burden [24, 25].
In addition, the increased numbers of inflammatory leuko-
cytes and alveolar macrophages will significantly contribute
to this increased pro-oxidant environment in the pulmonary
tissue of patients with COPD (see below). Cigarette smoke
contains a high concentration of reactive oxygen species
(ROS) with >10" free radicals per inhaled puff [26]. This
induction of oxidative stress by cigarette smoke-derived ROS
will result in processes such as lipid peroxidation, neutrophil
sequestration, inactivation of antiproteases and transcription
of stress-related genes [26, 27]. These ROS have also been
shown to cause severe damage to airway epithelial cells and
other structures of the airways and alveoli. Outside the lung,
tissue oxidative stress can have systemic effects by leakage of
ROS to the circulation, or indirectly by induction of stress-
related products such as cytokines [28].

Under normal physiological conditions antiproteases are in
balance with proteases. Cigarette smoke has the capacity to
inactivate several antiproteases in the pulmonary tissue
[29-32]. This will cause a decrease in the capacity of the

pulmonary tissue to inactivate several proteases that are
important in the normal tissue homeostasis in the lung [33,
34]. Smoking-induced emphysema is thought to be mediated
in part by the prolonged and direct inhibition of antiproteases
in the lung tissue [29, 31, 32]. A clear consequence is the risk
that proteases, neutrophil elastase for example, can cause
tissue injury under these conditions. Neutrophils, as part of
the innate immune system, are an integral part of the immune
surveillance on mucosal surfaces [35]. Proteases, including
neutrophil elastase are important players in the killing
reaction towards invading microorganisms. On the other
hand "spilling" of these enzymes will have important
consequences for host tissue damage provided that the
enzymes are not properly inactivated in the tissues.

Inflammation in the airways is a hallmark of the
pathogenesis of COPD

Acute inflammation

Besides the direct damage of the lung parenchyma by the
production of ROS, a clear inflammatory process is seen in
the pulmonary tissue of patients with COPD [36, 37]. This is
characterised by an influx of monocytes, neutrophils, CD8+
lymphocytes and sometimes eosinophils [38]. Apart from the
production of ROS by a membrane bound reduced nicotina-
mide adenine dinucleotide phosphate (NADPH)-oxidase [27]
these cells contribute to tissue damage by liberation of active
proteolytic enzymes [39, 40]. The accumulation of macro-
phages in the alveoli, bronchioli and small airways is
positively associated with the development of emphysema
[38, 40, 41]. However, the mechanisms leading to degradation
of extracellular matrix are incompletely understood. Serine
proteases (e.g. neutrophil elastase) and metalloproteinases
(e.g. matrix metalloproteinases (MMPs)) have been suggested
to be responsible for this process [42-45]. Neutrophil elastase,
proteinase, cathepsin B and MMPs have indeed been shown
to produce emphysematous lesions in animal studies [46-49].
The release of proteolytic enzymes by inflammatory cells
contributes to the protease/antiprotease imbalance. This
imbalance is enhanced by a decrease in antiproteases like
a-protease inhibitor and secretory proteinase inhibitor,
which are inactivated by oxidants (see above).

Chronic inflammation in lung tissue of COPD patients

Progression of COPD is characterised by an intense chronic
inflammation of the lungs [50]. Long-term tissue damage and
acute inflammation induced by noxious particles both
contribute to this switch to a chronic persistent inflammation.
Although some details regarding pathogenesis of inflamma-
tion in COPD have been identified, a large gap in knowledge
is present regarding the role of the inflammatory cells in the
origin and the progression of the disease. Biopsy studies in
COPD patients showed an increase of neutrophils and CD8+
cytotoxic lymphocytes in the mucosal epithelium and macro-
phages in the subepithelium [38, 51]. Macrophages can be
directly activated by cigarette smoke and are therefore
thought to play a critical role in sustaining the chronic
inflammation in the pulmonary tissue of COPD patients [20].
Neutrophils can subsequently participate by responding to
chemotactic factors released by macrophages, epithelial cells,
and other resident cells [18, 19]. Activated neutrophils and
macrophages can then contribute to the development of tissue
damage and emphysema by the release of ROS and
proteinases [40, 52, 53].
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Studies of alveolar septal wall remodelling in mild-to-
moderate emphysema show a loss of total tissue, interstitial
thickening, and increased numbers of interstitial fibroblasts
and interstitial macrophages [54]. It is relevant to note that
tissue remodelling is less obvious when compared to
pulmonary tissue in allergic asthma [55]. It is generally
accepted that chronic inflammation and remodelling are
intrinsically related [7, 55, 56]. However, the mechanisms
responsible for this remodelling are ill defined, but they seem
orchestrated by mucosal fibroblasts [22, 57]. It is therefore
tempting to speculate that the increased numbers of
leukocytes in the bronchial tissues are important in the
breakdown of tissue in chronic inflammatory lesions. Chronic
repair of these lesions leads to long-term activation of
fibroblasts resulting in tissue remodelling.

As chronic inflammation is an important process in COPD,
pro-inflammatory mediators of such as chemokines (e.g.
interleukin (IL)-8) and cytokines (e.g. tumour necrosis factor
(TNF)-a), will probably play an important role in the pathogen-
esis of COPD. These modulators of immune cell function are
found in sputum and bronchoalveolar lavage (BAL) fluid of
COPD patients [58, 59]. The identification of these cytokines
in plasma/serum of COPD patients strongly suggests that the
local inflammatory response communicates via these media-
tors with the systemic circulation. Prolonged liberation of
these mediators can be viewed as the generator of systemic
effects in COPD patients.

Systemic effects initiated by the local persistent
inflammatory response in COPD

Activation of leukocytes in the peripheral blood by medi-
ators originating from the local inflammatory response

Cytokines can directly (pre)activate peripheral blood
leukocytes. Several lines of evidence show that the peripheral
leukocyte population is activated in patients with chronic
inflammatory pulmonary diseases. In allergic asthma several
studies demonstrate the activation of eosinophils in the
peripheral blood [60-62]. In COPD, activation of peripheral
blood neutrophils has also been shown [63]. This activation is
subtle and is characterised by potentiation of migratory and
cytotoxic responses. [64, 65] This process is generally referred
to as priming [63]. The priming of leukocytes is essential for
and precedes their extravasation to the tissues [63]. In
addition, priming is essential for optimal activation of
cytotoxic mechanisms in granulocytes initiated by physiolo-
gical stimuli [66-68]. Therefore, cytokine/chemokine-induced
(pre)activation is likely to be essential for the maintenance
and progression of the inflammatory processes in the lungs.

A general consensus is present regarding the pathogenetic
role of granulocytes in chronic inflammatory diseases in the
lung. The situation with monocytes is less clear as these cells
are progenitors of macrophages and are involved in normal
tissue repair [69]. Monocytes accumulate in the lungs of
smokers in response to cigarette smoke [20]. Probably, smoke-
activated macrophages release monocytic chemokines (e.g.
monocyte chemoattractant protein (MCP)-1) into the peri-
pheral blood [19, 70]. Apart from the recruitment of cells to
the lung, these chemokines contribute to the priming of, and
to the increased expression of, CD43 and CD11b receptors on
monocytes found in the peripheral blood of COPD patients
[71, 72]. Priming of monocytes contributes to the homing of
these cells to their target organs such as the inflammatory loci
in the lungs. However, the risk for aberrant homing of these
cells to tissue sites outside the inflammatory loci also increases
and monocytes can thus be involved in pathogenetic tissue

responses. A clear example is the role of monocytes in
coronary heart disease and atherosclerosis [71, 73]. The
incidence of these clinical conditions is clearly increased in
patients with COPD [74, 75]. It remains to be established
whether these processes are causally linked.

It is not only the pre-activation of leukocytes that is
increased in the peripheral blood of patients with chronic
inflammatory pulmonary diseases, but also the absolute
numbers of leukocytes. This latter phenomenon is not
restricted to COPD patients but is also found in "healthy"
smokers. Many studies have found a correlation between the
leukocyte count in the peripheral blood and the current
smoking status [76-79]. Epidemiological studies regarding the
effect of smoking cessation on granulocyte counts in "healthy"
smokers showed a relatively fast recovery during the first
2 yrs after quitting. However, for lymphocytes and monocytes
effects of smoking could be observed up to 5 yrs after
cessation of smoking [76].

Neutrophils are important effector cells in COPD and
can mediate systemic effects of chronic inflammation

Increased numbers of neutrophils have been found in the
airways of "healthy" smokers without COPD in comparison
with healthy nonsmoking controls [80, 81]. Cigarette smoke
exposure in rabbits caused an increased number of granulo-
cytes in the peripheral blood similar to that seen in humans.
The bone marrow was indirectly stimulated by the cigarette
smoke and this resulted in a faster transit time of granulocyte
differentiation and proliferation through the post-mitotic
pool, and accelerated the release of both mature and
immature cells [81]. This is probably caused by the local
release of cytokines by the cigarette-exposed lungs. These
cytokines can subsequently mediate the communication
between the inflamed tissue and the bone marrow.

NOGUERA et al. [82] showed increased ROS production and
gene expression of adhesion molecules (macrophage antigen
(MAC)-1) on neutrophils isolated from patients with COPD
and "healthy" smokers, compared to cells from normal
nonsmoking individuals. This increased expression of adhe-
sion molecules is correlated with an increased respiratory
burst. Studies concerning the effects of cigarette smoke on
neutrophils show additional effects on priming of the
peripheral blood neutrophils [83, 84]. An increase of the
expression of MAC-1 (CD11b/CD18) and formyl-methionyl-
leucyl-phenylalanine (fMLP) receptors on neutrophils was
demonstrated after stimulation of peripheral blood neutro-
phils with cigarette smoke condensate [82]. A role for the
intracellular activation of mitogen-activated protein kinase
pathways was shown by the blocking effect of the p38
inhibitor SB203580 on the expression of CD11b/18 and fMLP
receptors [84]. These results suggest that neutrophils can be
directly primed by cigarette smoke. Interestingly, in COPD
patients who stopped smoking, the airway inflammation
was not repressed and ongoing and was associated with a
continuous activation of circulating neutrophils [85, 86].
Taken together, these studies suggest that smoking alone is
involved in changes in the activation state of peripheral blood
neutrophils from COPD patients and "healthy" smokers [82,
83].

In addition to the probable direct effect of cigarette
smoke, the increase in circulating cytokines is responsible
for a hyper-reactive state of the neutrophil. As mentioned
before, TNF-a has been found in increased amounts in BAL
and sputum samples of COPD patients [87, 88]. The increased
production of TNF-o by cells in the inflamed lung may
contribute to priming of inflammatory cells [83]. In patients
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with COPD an increase of the soluble TNF-a receptors in the
peripheral blood has also been demonstrated [59, 89]. In
another study performed in COPD patients in comparison
with healthy controls, the present authors found an increase
of soluble TNF-a receptor (sTNFa-R55) in the peripheral
blood of the COPD patients (fig. 2). However, in plasma no
correlation was observed between forced expiratory volume in
one second (FEV1) and TNFa-R55. On the other hand in
sputum, VERNOOY et al. [59] found a negative correlation
between sTNFa-R55 and FEVI. Furthermore an inverse
correlation with chronic hypoxaemia and circulating TNF-o
levels was found in COPD by TAKABATAKE et al. [90]. Pre-
liminary studies in the current authors’ group have confirmed
the importance of cytokines such as TNF-a in the peripheral
blood of COPD patients. E.H.J.N (Dermatology/Allergology
Dept, University Medical Centre Utrecht, Utrecht, The Nether-
lands; personal communication) and colleagues showed an
increase in activation status of peripheral blood neutrophils
in patients with COPD. Neutrophil messenger ribonucleic
acid (mRNA) expression of CD83, a marker for TNF-a- or
lipopolysaccharide-stimulated neutrophils, was found to be
elevated in peripheral blood neutrophils of COPD patients
irrespective of the smoking status. The activation of peri-
pheral blood neutrophils was related to disease severity. The
observation of low mRNA CDS83 expression in "healthy"
current smoking individuals suggests that smoking of cigar-
ettes did not activate peripheral neutrophils in these subjects.

The potential importance of TNF-a led researchers to
investigate whether there is an association between TNF-o
polymorphisms and disease severity in COPD. Several studies
regarding the TNF-a 308 polymorphism showed a correlation
between the presence of this polymorphism and the occur-
rence of COPD [91-93]. SAKAO and coworkers [91, 92] found
an increase in this TNF-o polymorphism in a group of
patients with severe emphysema, compared to a group with
less severe emphysema. Increased incidence of TNF-a
polymorphisms was also found in COPD patients compared
to healthy controls [91, 92].

In conclusion, the increased number of neutrophils in the
lungs of patients with COPD, the increased priming of
neutrophils in peripheral blood and the increase in TNF-o
and sTNF-a receptors suggest an important role for a TNF-o/
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Fig. 2.—Soluble TNF-o receptor 55 (STNF-aR55) (pgrmL™") measured
in serum of 23 patients with mild-to-severe chronic obstructive
pulmonary disease (COPD) (mean forced expiratory volume in one
second (FEV1) 53.9£4.2% of predicted; Global Initiative for Chronic
Obstructive Lung Disease (GOLD) class 1-3) compared with 22
healthy nonsmoking controls (mean FEV1 100.9+2.5% of pred).
sTNFaR55 was determined by an enzyme-linked immunosorbent
assay. Statistical analysis was performed by Mann-Whitney U-test.
**: p<0.01.

neutrophil axis in the maintenance of the COPD phenotype
[94]. Tt is, therefore, tempting to speculate that future
treatment of certain COPD phenotypes should be focused
on antagonism of the processes that are instrumental for the
interaction between neutrophils and TNF-a. So far no human
data are available in the context of COPD. It should,
however, be noted that antagonism of TNF-a has proven to
be very successful in the treatment in groups of patients with
rheumatoid arthritis and Crohn's disease (see below) [95-97].
The question also remains whether this therapy will ever
prove to be cost-effective in COPD.

Muscle wasting and weight loss initiated by chronic
inflammatory processes in COPD

COPD is increasingly considered as a complex disease
involving the participation of several organs [98, 99]. The
local inflammatory processes in the lungs can affect peripheral
tissues either by direct effects of released cytokines and
chemokines, or indirectly, via (pre)activation of peripheral
inflammatory cells. Despite the general consensus regarding
this issue, remarkably little is known about the underlying
mechanisms.

COPD is clearly associated with a progressive loss of
muscle mass and function. This is also seen in many other
chronic diseases such as cancer, congestive heart failure,
rheumatoid arthritis, and acquired immunodeficiency syn-
drome (AIDS) [100-102]. Decrease in muscle function
contributes to weakness, fatigue and has a negative influence
on the prognosis of the COPD patient. Muscle wasting is a
very complex clinical condition and is a consequence of
various physiological processes such as a change in metabo-
lism, protein synthesis and breakdown, and at a cellular level
an imbalance in proliferation, differentiation and survival
[103, 104]. The central cytokine in the loss of muscle mass is
TNF-a released by epithelial cells, macrophages and activated
neutrophils [104]. Different mechanisms are involved in the
TNF-a induced muscle loss. Firstly, TNF-a induces a direct
stimulation of protein loss in the skeletal muscle cells [68,
105]. Secondly, TNF-a stimulates apoptosis via interaction
with the TNF-a receptor present on the muscle cells. Several
signalling pathways have been shown to be involved in this
process including Fas-associated proteins, jun-N-terminal
kinases and the nuclear factor (NF)-«kB pathway [105, 106].
Thirdly, loss of muscle cells is induced via the modulation of
the TNF-o/NF-kB signalling due to ROS [105, 107]. The
importance of the ROS induced TNF-o/NF-«xB signalling
pathway in regulating the muscle injury, however, is still
unclear [105].

Persistent chronic inflammation

A critical point in the development of COPD is the switch
from a physiological self-limiting inflammation to a persistent
irreversible chronic inflammation. Surprisingly little is known
regarding this transition. It is, however, tempting to speculate
about the following model. In the early stages of COPD,
physiological inflammatory reactions are associated with
initial repair processes induced by the damage of the airway
tissue by cigarette smoke. In the majority of smokers this
smoking-induced physiological inflammation is self limiting
and clinical disease does not develop. In this situation
monocytes and neutrophils are found in the sputum and
tissue, but their function seems to be limited to normal repair
processes. However, they have the potential to cause a chronic
but subclinical inflammatory phenotype after prolonged
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smoking [76, 77]. A critical characteristic of this condition is
the fact that it is reversible upon cessation of smoking. In a
relatively large subpopulation (15-20%) of smokers this self-
limiting reversible response switches to an irreversible
inflammatory process. This inflammation has clear character-
istics of an autonomous process since cessation of smoking
does not lead to the resolution of inflammation.

Not much is known regarding the regulation of this
autonomous inflammation. However, recent data show that
stromal cells, such as fibroblasts and epithelial cells, are
instrumental in this process. Stromal cells can produce a
multitude of pro- and anti-inflammatory molecules. It has
been demonstrated that inflamed epithelium is an important
source of chemokines and cytokines [57, 58, 88, 108]. The
production of chemokines and cytokines by the epithelial cells
and fibroblasts can also have systemic effects similar to the
production of these mediators by tissue leukocytes.

Leukocyte extravasation to the inflamed lungs is regulated
by complex interaction between adhesion ligands on activated
endothelial cells and adhesion receptors expressed on pre-
activated leukocytes [109-111]. Several of these molecules are
regulated at the level of protein expression. A clear example is
the expression of selectins on both endothelial cells and
leukocytes. However, the function of other adhesion mole-
cules is modulated by a second level of regulation. This so-
called inside-out control causes a switch to high functionality
of these receptors [112]. It is induced by inflammatory
mediators either in soluble form or presented at the surface
of activated endothelial cells [113].

An increased endothelial expression of the adhesion
molecules intercellular adhesion molecule (ICAM)-1 and
E-selectin has been found in smokers [114-116]. Expression
and activation of CDI11b on peripheral blood leukocytes,
together with the endothelial expression of adhesion mole-
cules ICAM-1 and E-selectin, will result in an increased
adhesion and transmigration through endothelial cells [71,
72]. These processes can be potentiated by the production of
cytokines by stromal cells. In vitro studies with smoke extract-
stimulated fibroblasts showed an heterogeneous amount of
cytokines and chemokines such as IL-8, granulocyte colony-
stimulating factor and MCP-1, that can affect both bystander
cells and leukocytes [19, 20].

The mechanisms underlying the switch from an acute and
self-limiting inflammation to a chronic persistent inflamma-
tion in patients with COPD are currently poorly defined.
However, much can be learned from the clinical picture of
rheumatoid arthritis (RA). RA is a chronic inflammatory
disease which, like COPD, is characterised by an inflamma-
tory infiltrate in the affected joints. Elevated levels of
chemokines have been found in RA patients. These chemo-
kines are thought to be the modulators of the inflammatory
processes in this disease [117, 118]. Increased numbers of
T-cells and monocytes dominate in the inflamed joints.
Differential expression of chemokine receptors has been
found on monocytes in peripheral blood, synovial fluid and
synovial tissue in patients with RA compared with cells from
normal donors [119]. Also on T-cells a different expression of
chemokine receptors was found. Aberrant accumulation of
leukocytes at inflammatory sites has been shown to be due to
the expression of a certain set of chemokine receptors on the
inflammatory cells interacting with the production of certain
chemokines at tissue sites [117]. This "postal code" hypothesis
is very helpful in understanding how a limited amount of
chemokines can be involved in homing of many leukocyte
subtypes to a multitude of different tissue sites. Importantly,
it predicts the possibility that aberrant expression of these
chemokines/receptors leads to aberrant homing ("cells gone
astray at certain tissue sites") as suggested by BUCKLEY et al.
[120].

It is not only aberrant homing but also increased survival of
these cells that contribute to the chronic and persistent
inflammation. Delay in apoptosis of T-cells, found by
SALMON et al. [121] is a contributing factor to the persistent
inflammation in RA. This increased survival of cells was
induced by the abnormal synovial microenvironment. In
conclusion, the persistent inflammatory infiltrate in RA is
based on sustained and aberrant recruitment of cells as a
consequence of the increased chemokine production by
stromal cells, upregulation of chemokine receptors on the
inflammatory cells and the enhanced survival. Important for
the persistence of these processes are the stromal factors,
which are associated with the local microenvironment [122].

Conclusion

Novel insights into the mechanisms underlying the chronic
persistent inflammatory reaction in COPD leads to new
hypotheses that can help designing new therapeutic targets.
COPD appears to start as a reversible self-limiting inflam-
matory reaction as seen in all smoking individuals (fig. 3a)
mediated by both monocytes and neutrophils (fig. 3b). This
part of the disease has characteristics of a "damage and
repair" type of response. After prolonged exposure to
cigarette smoke a "switch to chronicity" takes place and an
irreversible inflammatory reaction is initiated which is clearly
associated with neutrophils in the lung tissue. Not much is
known regarding the underlying mechanism, but this chronic
inflammation is clearly associated with systemic effects on
distant tissues (fig. 3c).

If chronic persistent COPD is indeed in part mediated by
the aberrant production of inflammatory mediators by
stromal cells such as epithelial cells and fibroblasts this will

Switch to chronicity

Clinical

Subclinical | 5

A Reversible inflammation

Irreversible inflammation

Systemic response

Fig. 3.—Model for disease progression in chronic obstructive pulmo-
nary disease (COPD). The subclinical stage of COPD which can last
up to 20 yrs or more is characterised by a mainly reversible
inflammation (Global Initiative for Chronic Obstructive Lung Disease
(GOLD) severity stages at risk to mild COPD, panel A). Hereafter,
the disease gradually progresses, becomes irreversible due to a chronic
inflammatory reaction. During the switch to chronicity clinical
symptoms become more prominent (GOLD stage mild COPD to
severe COPD) (panel A). The subclinical phase of the disease is
characterised by a reversible inflammatory reaction mediated by
mononuclear and polymorphonuclear (PMN) leukocytes (panel B).
During the progression of COPD a chronic and persistent inflamma-
tion develops systemic effects (panel C).
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have important consequences for future therapy. It has been
shown that epithelial cells obtained from COPD patients
produce high amounts of cytokines such as IL-8 and IL-6
[123, 124]. In addition in BAL fluid of chronic asthma
patients the amount of IL-8 is not down-regulated by steroids
[124]. Therefore, it is tempting to speculate that epithelial cells
are refractory to treatment with corticosteroids. Interestingly,
many forms of COPD are not very responsive to the
treatment with (inhaled) steroids [125-128]. An alternative
repertoire of chemokine receptors on target cells in the
peripheral blood is induced by an aberrant production of
chemokines and cytokines in the pulmonary tissue of COPD
patients. These two changes might result in the inappropriate
homing of cells that have no function and go astray at these
tissue sites. When the stromal microenvironment allows these
cells to survive, an "aspecific" chronic inflammation can
occur. This putative mechanism might also explain the
occurrence of CD8+ T-cells in the pulmonary tissue of
COPD patients with no apparent function. The use of
corticosteroids is typically very effective in T-cell driven
adaptive immune responses. It is not clear which effects these
steroids have on the stromal microenvironment in chronic
persistent inflammatory lesions in COPD. Several studies
have demonstrated that steroids can induce survival of
neutrophils [129-131], which are typically associated with
more severe COPD. Therefore, it is important to define the
role of corticosteroids on the mechanisms occurring in the
stromal microenvironment.

Taken together, insight into the regulation of the inflam-
matory response in the lung and the communication of this
process with distant tissues in chronic inflammatory diseases
such as chronic obstructive pulmonary disease is starting to
evolve. It is now critical to elucidate the mechanisms
underlying the switch and maintenance of this chronic
autonomous process in order to identify new therapeutic
targets in this systemic disease.
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