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ABSTRACT Right ventricular (RV) diastolic stiffness is increased in pulmonary arterial hypertension
(PAH) patients. We investigated whether RV diastolic stiffness is associated with clinical progression and
assessed the contribution of RV wall thickness to RV systolic and diastolic stiffness.

Using single-beat pressure–volume analyses, we determined RV end-systolic elastance (Ees), arterial
elastance (Ea), RV–arterial coupling (Ees/Ea), and RV end-diastolic elastance (stiffness, Eed) in controls
(n=15), baseline PAH patients (n=63) and treated PAH patients (survival >5 years n=22 and survival
<5 years n=23).

We observed an association between Eed and clinical progression, with baseline Eed >0.53 mmHg·mL-1

associated with worse prognosis (age-corrected hazard ratio 0.27, p=0.02). In treated patients, Eed was
higher in patients with survival <5 years than in patients with survival >5 years (0.91±0.50 versus 0.53
±0.33 mmHg·mL-1, p<0.01). Wall-thickness-corrected Eed values in PAH patients with survival >5 years
were not different from control values (0.76±0.47 versus 0.60±0.41 mmHg·mL-1, respectively, not
significant), whereas in patients with survival <5 years, values were significantly higher (1.52
±0.91 mmHg·mL-1, p<0.05 versus controls).

RV diastolic stiffness is related to clinical progression in both baseline and treated PAH patients. RV
diastolic stiffness is explained by the increased wall thickness in patients with >5 years survival, but not in
those surviving <5 years. This suggests that intrinsic myocardial changes play a distinctive role in
explaining RV diastolic stiffness at different stages of PAH.
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Introduction
In pulmonary arterial hypertension (PAH), pulmonary vascular remodelling leads to a typical fourfold
increase in pulmonary artery pressure. The right ventricle (RV) copes with this increased pressure by
converting from a low-pressure to a high-pressure pump. As long as this adaptation process is successful,
cardiac output and oxygen supply to all organs are assured. Important mechanisms to adapt to an increase
in pressure include increased muscle mass and enhanced intrinsic myocyte contractility. Both adaptations
have been described in PAH patients and explain the observed increase in RV systolic elastance (Ees; a
measure of ventricular contractile function) in PAH patients [1–6].

However, potential consequences of RV systolic adaptation are increased myocardial stiffness and impaired
relaxation. Indeed, we recently showed impaired RV diastolic function in PAH patients [1]. Hypertrophy,
fibrosis and stiffening of the RV cardiomyocytes all appeared to contribute to the observed RV diastolic
stiffness [1]. However, this analysis was performed in end-stage PAH patients. Therefore, it remains
unclear whether RV diastolic impairment already plays a role at earlier stages of the disease, and whether
it is associated with clinical progression. Because RV hypertrophy is already present at early stages of the
disease, it could be hypothesised that the initial increase in RV diastolic stiffness is explained by the
increase in wall thickness. This contrasts with end-stage PAH, in which further increases in diastolic
stiffness may relate to intrinsic sarcomere stiffening. Therefore, the aims of this study are: 1) to investigate
whether increased RV diastolic stiffness is associated with clinical progression in baseline and treated PAH
patients; 2) to assess the contribution of RV wall thickness to RV diastolic stiffness in different disease
stages; and 3) to describe the change in RV diastolic stiffness during follow-up.

Methods
Subjects: control, baseline and treated cases
All patients diagnosed with idiopathic and heritable PAH at the VU University Medical Center
(Amsterdam, The Netherlands) between August 10, 1989 and February 25, 2014 (n=267) were evaluated
for inclusion in the current study [7]. Part of the patient selection procedure has been described previously
[6].

For the assessment of the relationship between diastolic stiffness and clinical progression and RV systolic
adaptation, baseline treatment-naïve patients with digitally stored good-quality RV pressure recordings and
cardiac magnetic resonance imaging (MRI) performed within 4 weeks of right heart catheterisation were
included (n=63) (fig. 1). Reasons for excluding patients were: no stored RV pressure curves at the time of
diagnosis (n=48) and RV pressure curves that were of poor quality (n=15).

The association between high diastolic stiffness and clinical progression was further assessed in treated
patients. In addition, these patients were used to determine 1) the relationship between RV diastolic
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FIGURE 1 Schematic overview of study populations and study aims. PAH: pulmonary arterial hypertension; Eed:
end-diastolic elastance; RV: right ventricular; Ees: end-systolic elastance.
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stiffness and RV systolic adaptation and 2) the interaction between RV wall thickness and RV systolic and
diastolic function (fig. 1). We retrospectively determined the availability of good-quality RV pressure
curves recorded during follow-up and within 4 weeks of cardiac MRI in all idiopathic and heritable PAH
patients seen in our hospital. We included patients with these measurements based on survival time after
their follow-up assessment. Patients who were alive and who had a follow-up time <5 years after the
measurement were not included. The remaining patients either survived >5 years or died or underwent
lung transplantation. These patients were divided into two groups, i.e. survival <5 and >5 years after the
follow-up measurements. Of the latter group, only two out of 22 included patients had an event during
follow-up.

In order to assess the change in diastolic stiffness under treatment, we performed a follow-up analysis in a
subgroup (n=30) of the baseline patient population in whom RV pressure curves and cardiac MRI were
available 0.5–2.5 years after the baseline measurement.

Subjects referred to the VU University Medical Center between January 1, 2003 and January 1, 2014 for
the evaluation of pulmonary hypertension, but who had normal pulmonary artery pressures (mean
pulmonary artery pressure (mPAP) <20 mmHg) were included as controls if RV pressure recordings with
a concomitant cardiac MRI were available (n=15). Due to the retrospective character of this study using
data obtained for clinical purposes, the medical ethics review committee of the VU University Medical
Center did not consider this study to fall within the scope of the Medical Research Involving Human
Subjects Act. Therefore, no additional approval was acquired.

Right heart catheterisation
Right heart catheterisation was performed as previously described [6]. A detailed description can be found
in the online supplementary material. mPAP was averaged over at least two respiratory cycles. Cardiac
output was measured by either the direct Fick method or thermodilution. Stroke volume was calculated as
cardiac output divided by heart rate. Cardiac output and stroke volume were indexed for body surface
area. Total pulmonary vascular resistance (TPVR) was calculated as mPAP and divided by cardiac output.

Cardiac MRI
All magnetic resonance images were acquired using a 1.5-tesla Avanto or Sonata MRI system equipped
with a six-element phased array coil (Siemens Medical Solutions, Erlangen, Germany) as previously
described [6]. A stack of short-axis images was taken at breath-hold per slice, with a slice thickness and
interslice gap of 5 mm. RV volumes and mass were determined by manually drawing endocardial and
epicardial borders at end-diastole and end-systole using mass analysis software (Medis Medical Imaging
Systems, Leiden, The Netherlands). End-diastole was defined as the onset of the R-wave of the ECG.
End-systole was determined visually as the smallest volume during the cardiac cycle. Relative wall
thickness was calculated by dividing RV mass by RV end-diastolic volume. RV ejection fraction (RVEF) =
(RVEDV−RVESV)/RVEDV×100%, where RVEDV is RV end-diastolic volume and RVESV is RV
end-systolic volume.

Pressure–volume analysis
Part of the data analysis has been described previously [1, 6, 8]. A detailed description of the data analysis
can be found in the online supplementary material. The slope of the end-systolic pressure–volume
relationship (Ees) was calculated as follows: Ees=(Piso−mPAP)/(EDV−ESV). RV isovolumic pressure (Piso)
per beat was determined according to the single-beat method of SUNAGAWA and co-workers [9, 10]. Arterial
elastance (Ea, a measure of afterload) was calculated by dividing mPAP by stroke volume. RV-arterial
coupling (RV systolic adaptation to arterial load) was then calculated as the ratio between Ees and Ea.
Diastolic stiffness was assessed by end-diastolic elastance (Eed). The diastolic pressure–volume relationship
was determined as described previously (see the online supplementary material) [1]. In previous studies
[1], we used β (the diastolic stiffness constant) from the exponential pressure–volume relationship
described by the formula P=α(eVβ−1) (fig. 2a). Since β describes only part of the end-diastolic pressure–
volume relationship, we used Eed in the present study. Eed was calculated as the slope of the diastolic
pressure–volume relationship at end-diastole using both α and β in the following formula: α·β·e(β·EDV) (fig.
2a). Figure 2b shows that Eed and β are related (r 0.84, p<0.001).

Statistical analysis
The data are presented as mean±SEM, unless otherwise stated. A p-value <0.05 was considered significant.
Survival was calculated from the time of diagnosis to death (all-cause mortality) or lung transplantation.
Follow-up was continued until March 1, 2014. A Kaplan–Meier analysis was performed for dichotomised
Eed, based on the median and receiver operating characteristic (ROC) derived cut-off values (online fig.
S1). The association between these parameters and survival was further explored by Cox regression
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analysis with correction for age differences. In addition, a univariate Cox regression analysis was used to
assess the association between continuous RV systolic and diastolic indices and outcome. Patient
characteristics of baseline patients divided into high and low Eed were tested using an independent t-test or
Mann–Whitney test, depending on normal distribution. A Chi-squared test was used to compare
categorical variables. A one-way ANOVA using Bonferroni’s multiple comparison test or a Kruskal–Wallis
test with Dunn’s multiple comparison was performed, depending on normal distribution, to compare
controls and treated PAH patient groups. A linear regression analysis was used to assess the correlation
between Eed and Ees. Treatment response was assessed using a paired t-test or a Wilcoxon signed-rank test.

Results
Relationship between RV diastolic stiffness and clinical progression
To investigate whether RV diastolic stiffness is related to clinical progression, we first compared the clinical
characteristics of baseline patients having low and high RV diastolic stiffness (median-based cut-off value
0.53 mmHg·mL-1). Table 1 shows that patients with a high diastolic stiffness had a higher mPAP, TPVR
and mean right atrial pressure (mRAP) when compared to patients with low diastolic stiffness. RV
volumes were similar in the two groups; patients with a high diastolic stiffness exhibited a lower RV
ejection fraction and higher RV mass and relative wall thickness. Interestingly, pressure–volume analysis
revealed that despite the higher afterload seen in patients with a higher diastolic stiffness, RV–arterial
coupling was similar. A survival analysis based on baseline values of RV diastolic stiffness showed that
age-corrected survival was worse for patients with a high diastolic stiffness (fig. 3). Similar findings were
observed when using an ROC analysis-based optimal Eed cut-off value as presented in the online
supplementary material (fig. S1). Univariate Cox regression analysis on RV function indices using
continuous variables revealed that higher Eed (hazard ratio (HR) 2.24, 95% CI 1.05–4.80; p=0.037) and
higher β (HR 4.75, 95% CI 1.43–15.85; p=0.011) were associated with worse outcome. Of the RV systolic
function indices, a lower RVEF (HR 0.94, 95% CI 0.90–0.99; p=0.011) and lower Ees/Ea (HR 0.15, 95% CI
0.03–0.69; p=0.015) were associated with worse outcome. mRAP, cardiac output and Ees were not
significantly associated with outcome in this analysis (mRAP HR 1.07, 95% CI 1.00–1.16; p=0.056; cardiac
output HR 0.64, 95% CI 0.38–1.07; p=0.090; and Ees HR 1.24, 95% CI 0.73–2.10; p=0.430).

To further investigate the association between RV diastolic stiffness and clinical progression in PAH
patients, we divided treated patients into two groups: 1) survival >5 years after a follow-up right heart
catheterisation (PAH>5years) and 2) death occurring within 5 years of a follow-up right heart
catheterisation (PAH<5years). Table 2 shows general characteristics, haemodynamics and cardiac MRI
measurements of patients with PAH>5years and PAH<5years, as well as control subjects. As expected,
PAH<5years had a higher RVEDV and a lower RVEF in comparison to PAH>5years. No difference was
observed between Ees and Ea in PAH>5years and PAH<5years, although Ees, Ea and Eed were all increased in
comparison to controls (fig. 4). However, in PAH<5years, but not in PAH>5years, the reduced RV–arterial
coupling coincided with increased RV diastolic stiffness. Together, these data suggest that RV diastolic
stiffening is closely associated with clinical progression in both baseline and treated PAH patients.
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FIGURE 2 a) Two methods to calculate diastolic stiffness. β has been used in previous studies [1] and describes only
part of the end-diastolic pressure–volume relationship. Eed (end-diastolic elastance) is used in the present study and
describes the slope of the end-diastolic pressure–volume relationship at end-diastole. b) Correlation between the
previously used measure of diastolic stiffness β and Eed in baseline pulmonary arterial hypertension patients. EDV:
end-diastolic volume; ESV: end-systolic volume; BDP: begin-diastolic pressure; EDP: end-diastolic pressure.
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RV relative wall thickness and diastolic stiffness in different disease stages
To investigate whether the increased Ees and Eed in PAH>5years and PAH<5years are a sole consequence of
increased RV wall thickness, we subsequently calculated wall thickness corrected Ees and Eed values. As
can be observed in figure 5, Ees values remained increased after correction for RV wall thickness. In
contrast, wall thickness-corrected Eed values were normal in PAH>5years, whereas in PAH<5years wall
thickness-corrected Eed values were significantly increased. These data suggest that diastolic stiffness in

FIGURE 3 Survival of baseline patients
according to low (⩽0.53) or high
(>0.53) end-diastolic elastance (Eed). #:
age-corrected.
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TABLE 1 General characteristics and hemodynamics of the total cohort of baseline idiopathic
and heritable pulmonary arterial hypertension (PAH) patients divided by low and high right
ventricular (RV) diastolic stiffness

Baseline patients PAH patients

Low Eed High Eed

Subjects n 63 32 31
Age years 56 (35–71) 58 (40–73) 49 (30–67)
Female 41 (65) 21 (66) 20 (65)
BSA m2 1.9 (1.7–2.1) 1.9 (1.7–2.1) 1.9 (1.7–2.1)
Length of follow-up years 2.7 (1.4–4.7) 2.7 (1.2–8.5) 2.4 (1.5–3.9)
Events 16 (25) 5 (16) 11 (36)
Haemodynamics
mPAP mmHg 53 (46–59) 50 (45–54) 56 (47–67)*
Cardiac index L·min-1·m-2 2.3 (2.0–2.7) 2.5 (2.1–2.9) 2.2 (2.0–2.7)
HR bpm 80 (71–91) 78 (68–87) 80 (74–97)
TPVR mmHg·min-1·L-1 12.3 (8.3–15.2) 11.0 (7.6–12.9) 14.5 (9.5–19.5)*
mRAP mmHg 6 (4–11) 5 (4–9) 8 (5–11)*
SvO2 % 63 (56–68) 67 (58–70) 61 (55–65)

Cardiac MRI
RVEDV mL 142 (122–175) 149 (134–166) 140 (117–191)
RVESV mL 93 (70–128) 91 (73–112) 99 (66–145)
RVEF % 36 (23–45) 39 (35–47) 27 (18–38)*
RV mass g 98 (78–118) 90 (77–113) 112 (81–132)*
Relative wall thickness g·mL-1 0.65 (0.55–0.82) 0.59 (0.51–0.70) 0.76 (0.57–0.84)*

Pressure–volume analysis
Ees mmHg·mL-1 1.35 (0.99–1.94) 1.12 (0.87–1.49) 1.64 (1.18–2.59)*
Ea mmHg·mL-1 1.14 (0.78–1.44) 0.86 (0.64–1.20) 1.38 (1.05–2.09)*
Eed mmHg·mL-1 0.52 (0.37–0.86) 0.37 (0.27–0.45) 0.86 (0.62–1.22)*
Ees/Ea 1.29 (0.99–1.57) 1.32 (1.00–1.66) 1.25 (0.90–1.56)

Data are presented as median (interquartile range) or n (%), unless otherwise stated. Eed: end-diastolic
elastance; BSA: body surface area; mPAP: mean pulmonary artery pressure; HR: heart rate; TPVR: total
pulmonary vascular resistance; mRAP: mean right atrial pressure; SvO2: mixed venous oxygen saturation;
MRI: magnetic resonance imaging; RVEDV: right ventricular end-diastolic volume; RVESV: right ventricular
end-systolic volume; RVEF: right ventricular ejection fraction; Ees: end-systolic elastance; Ea: arterial
elastance. *: p<0.05 versus PAH low Eed.
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stable patients may be largely explained by hypertrophy, while in progressive patients additional intrinsic
factors may play a role in increasing diastolic stiffness.

Relationship between RV diastolic stiffness and systolic adaptation
To assess whether diastolic stiffness is associated with impaired RV systolic adaptation, we investigated the
relationship between Eed and Ees/Ea and between Eed and Ees in baseline and treated patients. In baseline
patients, Eed showed no correlation with Ees/Ea (r2=0.01, p=0.53), but a weak correlation with Ees (r2 0.25,
p<0.001). In treated patients, no correlation between Eed and Ees was observed (r2 0.03, p=0.264) and only
a weak correlation between Eed and Ees/Ea was observed (r2=0.17, p=0.005), suggesting that RV diastolic
stiffening and systolic adaptation are largely independent processes.

Change in RV diastolic stiffness under treatment
To investigate whether diastolic stiffness changes under treatment, we performed a follow-up analysis in a
subgroup of the baseline PAH patients. Online table S1 shows the general characteristics and
haemodynamics of the total cohort and of the subgroup at baseline and follow-up. 30 patients were
included. Median time between baseline and follow-up was 1.0 year (interquartile range (IQR) 0.8–
1.1 years). The subgroup was representative of the total baseline population, as no differences in general
characteristics and haemodynamics were observed.

Eed showed a decrease of >10% during follow-up in 20 patients. The remaining patients showed an
increase in Eed during follow-up. Absolute median change in Eed was -0.20 mmHg·mL-1 (IQR -0.37–
0.12 mmHg·mL-1, p=0.061). Figure 6 shows individual changes in Eed during follow-up. Also shown are
changes in RV relative wall thickness and Eed/relative wall thickness. As can be observed, relative wall
thickness decreased (p=0.011), while Eed/relative wall thickness did not alter under treatment (p=0.175).

Discussion
In the present study we assessed RV diastolic stiffness in a large cohort of baseline and treated PAH
patients and demonstrated that: 1) diastolic stiffening is associated with clinical progression in both
baseline and treated PAH patients; 2) diastolic stiffness in treated PAH patients with a survival >5 years is
largely explained by increased RV wall thickness, whereas in PAH patients with a survival <5 years RV

TABLE 2 Clinical characteristics and right ventricular magnetic resonance imaging (MRI)
parameters of controls and the cohort of treated idiopathic and heritable pulmonary arterial
hypertension (PAH) patients divided based on survival (<5 or >5 years)

Controls PAH patients

PAH>5years PAH<5years

Subjects n 15 22 23
Age years 49 (34–59) 37 (31–51) 43 (36–54)
Female n (%) 13 (87) 18 (82) 18 (78)
BSA m2 1.91 (1.70–2.04) 1.82 (1.68–2.04) 1.75 (1.62–1.92)
Haemodynamics
mPAP mmHg 14 (12–16) 50 (40–61)* 50 (43–60)*
Cardiac index L·min-1·m-2 3.6 (3.1–5.1) 3.1 (2.3–3.4)* 2.8 (2.2–3.5)*
HR bpm 79 (72–87) 78 (68–90) 89 (77–100)
TPVR mmHg·min-1·L-1 2.1 (1.5–2.5) 9.1 (6.6–13.8)* 10.2 (7.9–14.7)*
mRAP mmHg 4 (3–5) 5 (2–8) 9 (4–13)*
SvO2 % 75 (71–80) 67 (63–72)* 63 (56–69)*

Cardiac MRI
RVEDV mL 120 (94–135) 138 (118–159) 200 (136–269)*,#

RVESV mL 44 (37–50) 75 (66–114)* 143 (92–227)*
RVEF % 63 (54–68) 42 (33–47)* 22 (14–33)*,#

RV mass g 37 (31–48) 96 (81–116)* 125 (86–149)*
Relative wall thickness g·mL-1 0.33 (0.27–0.39) 0.70 (0.64–0.80)* 0.61 (0.47–0.80)*

Data are presented as median (interquartile range), unless otherwise stated. BSA: body surface area;
mPAP: mean pulmonary artery pressure; HR: heart rate; TPVR: total pulmonary vascular resistance;
mRAP: mean right atrial pressure; SvO2: mixed venous oxygen saturation; RVEDV: right ventricular
end-diastolic volume; RVESV: right ventricular end-systolic volume; RVEF: right ventricular ejection
fraction; RV: right ventricular. *: p<0.05 versus controls; #: p<0.05 versus PAH>5years.
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diastolic stiffness remains increased after correction for RV wall thickness; 3) RV diastolic stiffness is only
weakly associated with impaired RV systolic adaptation in treated PAH patients, while no relationship
exists in baseline PAH patients; and 4) RV diastolic stiffness decreases >10% during follow-up in the
majority of PAH patients, but overall no statistical significant decrease in diastolic stiffness can be
observed.
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FIGURE 4 Pressure–volume analysis performed in controls (n=15), pulmonary arterial hypertension (PAH) patients
surviving >5 years (PAH>5years) after a follow-up right heart catheterisation (n=22) and PAH patients in whom death
occurred within 5 years of a follow-up right heart catheterisation (n=23). a) Right ventricular (RV) systolic elastance; b)
arterial elastance (Ea); c) RV diastolic stiffness; d) RV–arterial coupling. Ees: end-systolic elastance; Eed: end-diastolic
elastance. *: p<0.05 versus controls; #: p<0.05 versus PAH>5years.
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after follow-up right heart catheterisation. *: p<0.05 versus controls; #: p<0.05 versus PAH>5years.
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The clinical importance of RV diastolic stiffness
Previous large PAH patient cohort studies have demonstrated the clinical importance of load-dependent
measures of RV diastolic stiffening, such as right atrial pressure, increased atrium-dependent RV filling,
and prolonged RV isovolumic relaxation [11–15]. In particular, right atrial pressure is one of the
parameters that is frequently identified as predictor of survival in multivariate survival analyses [11]. We
have recently introduced a novel method to assess RV diastolic stiffness in a load-independent fashion
using a single-beat, diastolic pressure–volume analysis [1]. Load-independent assessment of RV diastolic
stiffness is scientifically important, as it provides insight into the intrinsic alterations of the RV
myocardium independently of the degree of pressure overload. Recently, VANDERPOOL et al. [16] showed
that RV diastolic stiffness relates to survival, but this association was not observed when a correction was
made for RAP, mPAP and stroke volume. As this analysis was performed in a mixed group of World
Health Organization (WHO) group I (including connective-tissue disease-associated PAH) and WHO
group II pulmonary hypertension patients, it remains unknown whether load-independent RV diastolic
stiffness is related to clinical progression and development of right heart failure in idiopathic PAH
patients. Therefore, we investigated the association between clinical progression and RV diastolic stiffness
and observed an association in both treated and baseline PAH patients.

Subsequently, we were interested in the relationship between RV diastolic stiffness and RV systolic
adaptation. Both systolic and diastolic function are closely modulated on a cellular level by calcium flux
and sarcomeric function, and at the ventricular level by wall mass [13, 17]. We identified changes in
protein expression of important calcium-handling proteins indicating prolonged diastolic calcium
clearance in tissue samples from end-stage PAH patients [18]. Furthermore, increased calcium sensitivity
of the sarcomeric proteins may add to RV systolic adaptation, as less calcium would be needed to obtain a
similar development of force [1, 18]. However, at the same time increased calcium sensitivity will affect
relaxation of the RV cardiomyocytes, thereby inducing diastolic stiffening of the RV. Therefore, we
recently proposed that in early stages of PAH, RV diastolic stiffness may result from the adaptation
mechanisms that are induced to preserve RV systolic adaptation as long as possible, such as ventricular
wall mass and increased calcium sensitivity [19]. In later stages, RV diastolic stiffness will become more
prevalent due to stiffening of the RV cardiomyocytes themselves, which will eventually hamper RV systolic
adaptation in end-stage PAH [15, 19, 20]. In this study, support for this hypothesis was provided by
finding increased RV diastolic stiffness in baseline PAH patients in whom RV systolic adaptation was
relatively preserved. Moreover, in treated PAH patients only, RV diastolic stiffness coincided with impaired
RV systolic adaptation.

Possible mechanisms of RV diastolic stiffness in PAH
To obtain further insight into the mechanism of RV diastolic stiffness and systolic function in different
stages of PAH, we calculated systolic elastance corrected for relative wall thickness. We used relative wall
thickness (EDV/RV mass) as to control for the effect of both volume and hypertrophy on systolic and
diastolic stiffness. After correction for wall thickness, RV systolic function was increased in all PAH
patients in comparison to controls. This indicates that in addition to the increased RV wall mass, intrinsic
alterations in the cardiac muscle are important in determining increased systolic function of the RV in
PAH. RV diastolic stiffness corrected for wall thickness was not different from control subjects in PAH
patients with a survival >5 years. This may indicate that RV diastolic stiffness in early or stable PAH is
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merely a consequence of RV systolic adaptation. In PAH patients with a survival <5 years, RV diastolic
stiffness is increased out of proportion to the increase in wall thickness, which indicates that intrinsic
cardiac muscle alterations play an additional role in determining diastolic stiffness in more advanced PAH.
One such intrinsic alteration could be RV cardiomyocyte stiffening due to hypophosphorylation of the
giant sarcomeric protein titin, which we recently showed in RV samples of end-stage PAH patients [18].
Another possible mechanism of RV diastolic stiffness may be increased collagen deposition, although until
now only modest increases in RV fibrosis have been reported in clinical PAH [1].

Clinical implications
With the present study we show that in a large baseline and treated PAH patient cohort RV diastolic
stiffness is associated with clinical progression. RV diastolic stiffness decreased >10% in the majority of
patients, but showed no statistical significant decrease in the total group analysis. The minimal decrease in
RV diastolic stiffness coincided with a decrease in relative wall thickness, indicating that treatment has
little or no effect on intrinsic RV diastolic stiffness. These findings should be subjected to further
evaluation and underscore the need to further explore the additive value of the determination of diastolic
stiffness in predicting patient outcome. Moreover, future studies are needed to provide tools to
noninvasively assess RV diastolic function. Currently, the available noninvasive techniques
(echocardiography and MRI-measured relaxation velocities and filling patterns) have significant drawbacks
(load dependency) which limit the clinical applicability of noninvasive load-independent RV diastolic
evaluation [21–23]. However, studies on the assessment of diastolic wall strain in patients with left
ventricular diastolic dysfunction have shown promising results, making diastolic wall strain a possible
future evaluation tool for RV diastolic dysfunction in PAH [24, 25].

Conclusions
With the present study we demonstrate that RV diastolic stiffening is associated with clinical progression
baseline as well as treated PAH patients. In addition, we show that RV diastolic stiffness in treated PAH
patients with a survival >5 years is largely explained by increased RV wall thickness, whereas in PAH
patients with a survival <5 years the further increase in RV diastolic stiffness is most likely related to
additional intrinsic alterations of the myocardium. Furthermore, RV diastolic stiffness is only weakly
associated with impaired RV systolic adaptation in treated PAH patients, while no relationship exists in
baseline PAH patients.
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