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ABSTRACT 

Significant airway remodeling is a major component of the increased 

morbidity and mortality observed in cystic fibrosis (CF) patients. These airways 

feature ongoing leukocytic inflammation and unrelenting bacterial infection. In 

contrast to acute bacterial pneumonia, CF infection is not cleared efficiently and the 

ensuing inflammatory response causes tissue damage. This structural damage is 

mainly a result of free proteolytic activity released by infiltrated neutrophils and 

macrophages. Major proteases in this disease are serine and matrix metalloproteases 

(MMPs). While the role of serine proteases, such as elastase, has been characterized 

in detail, there is emerging evidence that MMPs could play a key role in the 

pathogenesis of CF lung disease. This review summarizes studies linking MMPs with 

CF lung disease and discusses the potential value of MMPs as future therapeutic 

targets in CF and other chronic lung diseases. 
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Proteolytic activity in cystic fibrosis lung disease 

Chronic progressive destruction of the lung is the major cause of death in 

patients with cystic fibrosis (CF) [1]. While gastrointestinal symptoms are treated 

efficiently by established medications, such as pancreatic enzyme replacement 

therapy, the progression of pulmonary symptoms with destruction of pulmonary tissue 

cannot be controlled sufficiently thus far. CF airways are characterized by airway 

surface liquid (ASL) depletion producing mucus obstruction and chronic 

inflammation with persistent leukocyte accumulation, mainly of neutrophils and 

macrophages. Despite the presence of millions of activated phagocytes, bacterial 

pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus and 

Haemophilus influenzae flourish in the CF airway microenvironment, resulting in 

chronic infection. Since recruited leukocytes are impaired in their antibacterial 

capacity due to decreased mucociliary clearance [2], CXCR1 receptor cleavage [3], 

excessive but inefficient neutrophil extracellular trap (NET) formation [4] and other 

mechanisms, the dehydrated mucus and extracellular DNA obstruct the airways and 

other toxic products, such as proteases and oxidants, cause host tissue damage. Major 

proteases in this disease situation are serine and matrix metalloproteases (MMPs). 

While the role of serine proteases such as neutrophil elastase (NE), cathepsin G and 

proteinase 3 have been characterized in detail in murine and human studies (including 

natural and synthetic antagonists), there is emerging evidence that MMPs could play a 

key role in the pathogenesis of CF lung disease. The amount of free proteolytic 

activity increases over the lifetime of CF patients [3] and overwhelms the antiprotease 

shield of the airspaces. These enzymes damage cellular and pulmonary structures, 

including cilia, elastin, fibronectin, surfactant proteins A and D, immunoglobulins, 

and CXCR1 on neutrophils and CD4 on lymphocytes [5]. In the following chapters, 
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we will introduce the MMP family and will highlight the potential of several members 

as future targets in CF lung disease. 

 

MMPs: Structure and function 

MMPs are one of four subfamilies within the superfamily of 

metalloendopeptidases known as the metzincins [6].  There are > 20 MMPs that have 

been identified and, based on structure and substrate specificity, are divided into 

different groups.  All MMPs exhibit an N-terminal signal sequence, a prodomain 

region, and active catalytic domain (with a zinc-binding region).  Another major 

domain observed is a hemopexin-like C-terminal domain (found in all MMPs except -

7 and -22), which is thought to mediate substrate specificity of the MMP for 

components of the ECM.  Additional domains include a transmembrane domain 

(found in MMP-14, -15, -16, -24) and GPI anchor (MMP-17 and MMP-25), important 

to cell-bound MMPs.  Furin-recognition motifs are seen in multiple MMP isoform’s 

prodomain region and type II fibronectin-repeats are seen in gelatinase (MMP-2 and 

MMP-9) catalytic domains.  These regions seem to have important implications to the 

interaction of the MMP with its substrate (Reviewed in [7]). 

 MMPs have the combined ability to degrade essentially all connective tissue 

components. While MMPs are involved in many normal homeostatic mechanisms, they 

are commonly elevated in their expression and activities in conditions where 

inflammation and tissue remodeling/repair are operative [8, 9]. MMPs are regulated at 

various points.  They are regulated at the level of transcription (through their induction 

by various cytokines such as IL-1 and TNF-alpha) and may involve the activation of a 

diverse group of intracellular signaling cascades (such as p38 MAPK or ERK 1/2 

MAPK) leading to activation of nuclear signaling factors such as AP1, NF-kappa B, 
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and STAT to induce MMP transcription [10].  Most MMPs are translated to a zymogen 

(inactive) form.  These enzymes have a pro-domain region which is cleaved through a 

“cysteine switch” mechanism and is then activated.  Activation can be induced by 

various triggers, including protease-mediated activation (either by another protease or 

auto-activation by the active form of that MMP), oxidant-mediated activation, or 

matrix-mediated activation.  In addition to regulation of activation, there are numerous 

inhibitors of MMPs.  Although tissue inhibitor of metalloproteases (TIMPs) is often 

thought of as the predominant group of inhibitors for MMPs, they are really the most 

specific endogenous MMP inhibitors.  Rather, the majority of MMP-related inhibition 

in vivo occurs through relatively non-specific MMP inhibitors, such as alpha-2 

macroglobulin [8, 11].  TIMPs are a group of four small (20-24 kDa) MMP-specific 

inhibitors which bind to MMPs in a 1:1 stoichiometric relationship [12-15].  Animal 

studies, in addition to human studies in adults, support a role for MMPs and an 

imbalance between MMPs and TIMPs in the pathogenesis of several well-recognized 

pulmonary disorders such as COPD [16, 17] and asthma [18-20]. 

MMPs perform numerous biologic functions, including degradation of matrix 

components and remodelling of tissues, release of cytokines, growth factors and 

chemokines, and modulation of cell mobility and migration [11].  Data suggests that 

dysregulated cellular production, secretion and activation of MMPs, and/or 

dysfunction of their inhibitors are involved in pathologic conditions within the lung 

parenchyma.  Through degradation of extracellular matrix components, MMPs can 

destroy the alveolar epithelium, as well as disrupt reorganization during the repair 

process [8, 9].  Although previously well-studied in other pulmonary disorders, the 

role of MMPs in CF lung disease has only recently been emerging and suggests 

important downstream effects of this proteolytic dysregulation. 
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MMPs in cystic fibrosis lung disease 

MMPs were first found to be upregulated in the airways of CF patients in 

1995 when Delacourt et al described the increase of a 95/88 kDa gelatinase isoform 

(presumably MMP-9) in the sputum of patients with CF lung disease (n=27) 

compared to asthmatic controls (n=9) with an associated imbalance of TIMP [21].  

Since this finding, there has been a burgeoning of MMP literature in CF lung disease, 

focusing not only on relative protease/antiprotease imbalance, but also increasing 

evidence for downstream effects of this proteolytic environment. These potential 

biological effects with regards to CF lung disease are shown in Figure 1. 

 

MMP-2: MMP-2 (EC 3.4.24.24) is a protease with gelatinolytic activity (hence its 

alternate name, Gelatinase A), which is found to be constitutively expressed in 

various cell types found in the lungs.  This enzyme has a broad spectrum of substrates 

and is involved in modulating diverse cellular functions including angiogenesis [22], 

tissue remodeling [9], and potentiation of inflammatory response [23].  MMP-2 is 

activated in a unique MT-MMP dependent manner, demonstrating a classic example 

of MMP-to-MMP activation [24].  MMP-2 is thought to contribute to the 

pathogenesis of a variety of pulmonary disorders including COPD, asthma, lung 

cancer, and interstitial pulmonary fibrosis [25]. 

MMP-2 has not been extensively studied in CF lung disease but there are 

some interesting insights into the potential role of this protease in CF.  For example, 

one study has shown that inhibition of MMP-2 in Calu-3 cells (which constitutively 

express MMP-2) leads to augmentation of chloride transport in these cells, suggesting 

autocrine regulation of ion transport via this protease [26].  In addition, McElvaney 
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and colleagues have recently demonstrated that NE may augment MMP-2 expression 

from epithelial cells, potentially leading to increased remodeling and inflammatory 

response in CF [27].  Interestingly, although MMP-2 elevations have not been 

consistently observed in pulmonary specimens from individuals with CF [28, 29], a 

recent manuscript has found that MMP-2 decreases in serum during CF exacerbation 

[30]. 

 

MMP-7:  MMP-7 (EC 3.4.24.23), or matrilysin, is the smallest known MMP, but 

exhibits broad substrate specificity with the capacity to cleave multiple components of 

the matrix [31].  In addition, MMP-7 has been observed in playing a role in diverse 

biological responses such as airway re-epithelialization, inflammation [32], host 

defense [33], and cell growth via cleavage of IGF binding proteins [34].  MMP-7 has 

been shown to be involved in IPF, as knockout mice are protected from bleomycin-

induced injury [35] and MMP-7 is overexpressed in lung tissues from patients with 

IPF [36]. 

MMP-7 may play an important role in the injury/repair response in CF lung 

disease.  Dunsmore et al have shown increased MMP-7 expression in the airway 

epithelia of CF patients, and that it is differentially released either apically or basally 

from these cells.  The authors hypothesize that this regulation is important in the 

injury response and show that human airways treated with an MMP-7 inhibitor fail to 

re-epithelialize after injury [37].  To our knowledge, specific studies of the 

importance of MMP-7 expression in CFTR knockout mice after injury have not yet 

been published. 
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MMP-8:  MMP-8 (EC 3.4.24.34), or neutrophil collagenase, is one of 3 collagenase 

MMPs (MMP-1, -8, and -13), and is highly expressed in neutrophils.  These 

collagenases have common cleavage sites for type I, II, and III collagens, producing a 

three-fourths N-terminal fragment and a one-fourth C-terminal fragment [38-40]. This 

suggests a potential redundancy for these proteases in disease.  MMP-8 has also been 

show to cleave aggrecan in vitro [41], and may play a role in arthritis [42].  Two 

specific isoforms of pro-MMP-8 have been described in humans: one which is 

approximately 80 kDa and is highly expressed in PMNs, and a 55 kDa isoform which 

is expressed from mesenchymal cells [43].  Beyond the capacity to cleave 

extracellular matrix, MMP-8 has diverse biological effects including modulation of 

chemokines [44], regulation of repair response [45], and innate immunity [46]. 

Increased MMP-8 expression has been characterized in various lung diseases 

including COPD [47], IPF [43], bronchiectasis [48], and asthma [49]. 

MMP-8 expression and activity has also been found to be elevated in the 

airway secretions of patients with CF lung disease [50].  This enzyme is also elevated 

in the serum of patients with CF, and levels correlate with lung function (MMP-8 

level vs. %FEV1, r=-0.468, p<0.001) [30].  Unfortunately, beyond these 

characterizations, there is little else known regarding the impact of this dysregulation 

on CF pathogenesis.  Recently, a novel neutrophil chemokine (proline-glycine-

proline) was found in the sputum of CF patients and MMP-8 was found to be an 

important enzyme involved in its generation [51].  Further examination of the impact 

of MMP-8 on progression of CF lung disease is certainly warranted. 

 

MMP-9:  Perhaps one of the most extensively-studied proteases, MMP-9 (EC 

3.4.24.35), or gelatinase B, is broadly expressed in a variety of cells in the lung 
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including inflammatory (PMNs, macrophages), epithelial, and endothelial cells.  This 

observed redundancy belies important location-specific functions of MMP-9, some of 

which seem in opposition to other MMP-9 functions.  For example, MMP-9 has 

observed important pro-inflammatory effects by generating PGP [51] and increasing 

chemokine potency of IL-8 [52], but MMP-9 also belies important role in the 

regulation of granuloma formation in tuberculosis [53].  Similarly, MMP-9 has been 

predominately thought to lead to matrix breakdown but recently it has been suggested 

that MMP-9 may have a role in matrix repair [54, 55]. 

MMP-9 has been extensively examined in the lower airway secretions of CF 

patients and has been found to be increased in both quantity and activity [28, 50].  

One study found a correlation with lung function (FEV1) and MMP-9 with r value of 

-0.78 (p = 0.001) [56].   In addition, MMP-9 expression is also elevated in the serum 

of patients with CF lung disease [30]. 

 

MMP-12: MMP-12 (EC 3.4.24.65), also known as macrophage elastase, is a protease 

secreted by macrophages with the capacity to degrade elastin.  MMP-12 was first 

cloned by Shapiro et al [57] and seems to have partial regulation by proteases such as 

thrombin and plasmin and can be released from macrophages by a variety of 

inflammatory cytokines such as TNF-a and IL-1b [58]. This protease has emerging 

biological effects in modulating cytokine and chemokine networks, including 

cleavage of pro-TNF-α [59] and ELR+ CXC chemokines [60]. The physiological role 

of MMP-12-mediated proteolysis remains poorly understood and may be related to 

remodelling of connective tissue during growth and development, and migration of 

macrophages into tissues. Interestingly, recent data demonstrated that MMP-12 has 

direct antimicrobial activity and plays an important role in macrophage-mediated 
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killing of both gram-negative and gram-positive bacteria in the lung and other organs 

[61]. Increased proteolytic activity of MMP-12 has been shown to play an important 

role in the pathogenesis of emphysema induced by either cigarette smoke [17] or 

overexpression of the Th-2 cytokine IL-13 in mice [62]. 

A recent human study identified an SNP producing a functional variant in the 

MMP-12 promoter that is associated with lung function in asthmatic children and the 

risk of COPD in adult smokers, suggesting that MMP-12 plays an important role in 

the pathogenesis of asthma and COPD [63].  Recently, the expression of MMP-12 in 

the sputum of CF individuals has been demonstrated [28]. The role of increased 

MMP-12 activity in CF lung disease has not been studied.  However, recent 

observations in transgenic mice with airway-specific overexpression of the amiloride-

sensitive epithelial Na+ channel (βENaC-Tg mice) that exhibit ASL depletion and 

phenocopy CF lung disease [64] suggest that airway surface dehydration and 

mucostasis cause macrophage activation and MMP-12-dependent emphysema [65].  

Further elucidation of the role of MMP-12 in the human CF lung should be facilitated 

by the recent development of FRET probes designed to assess MMP-12 activity on 

leukocytes and biological fluids [66]. Based on their high sensitivity (with a detection 

limit in the sub-nanomolar range for human MMP-12), these novel MMP-12 FRET 

sensors should be suitable to measure MMP-12 activity in clinical specimens such as 

BAL or sputum and determine its role in the pathogenesis and as a potential 

biomarker of CF and other chronic inflammatory lung diseases. 

 

Outlook: Targeting MMPs to treat cystic fibrosis lung disease 

 As more information has been found regarding the presence and activity of 

MMPs in CF lung disease, there has been increased interest in modulating MMP 
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activity to improve disease outcome. Evidence supporting the involvement of MMPs 

in CF lung disease is summarized in Table 1. 

MMP inhibition has been extensively studied as a potential therapeutic in 

cancer, and although there has been significant promise for these drugs, two previous 

phase III trials have shown no clinical benefit [67]. In addition, an MMP inhibitor 

(PG-116800) has been studied in post-myocardial infarction cardiac remodelling and 

has shown no benefit.  To date, the clinical use of MMP inhibitors in the setting of 

inflammatory disorders such as osteoarthritis has been largely disappointing [68].  

Unfortunately, many synthetic MMP inhibitors either have been limited from either 

off-target effects or inability to tolerate side effect profiles.  Despite difficulties of 

translation in other conditions, interest has turned to the potential of MMP inhibition 

in lung disease such as CF.  Various approaches have been entertained for inhibition 

of these activities and detailed below. 

 

Tissue inhibitors of metalloproteases (TIMPs) 

The tissue inhibitors of metalloproteases are naturally occurring inhibitors of MMPs 

in vivo. While TIMP binding blocks MMP activity, TIMPs themselves can be 

inactivated by proteases like NE by direct proteolytic degradation [69] or excessive 

MMP-12 activity [70].  Though this kind of TIMP/MMP dysregulation has been 

shown to contribute to the pathology of the disease and to correlate to disease severity 

in animal and human studies, there have not, to our knowledge, been attempts to 

replete TIMPs as a treatment for CF. Though TIMPs serve as fairly potent inhibitors 

of MMP activity, the increased quantities of TIMP required to overcome a pro-

proteolytic environment would likely make TIMP therapy cost-prohibitive. 
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Antibiotics 

As previously mentioned, the current standard of long term clinical care of patients 

with CF lung disease often involve 3 times per week dosing of a macrolide antibiotic 

[71]. While these antibiotics have multiple biological effects, a potent effect is the 

inhibition of MMP activities. Currently, tetracycline antibiotics have not been 

systematically examined for similar anti-protease or anti-inflammatory activities in 

CF. Previous data indicates that tetracyclines have intrinsic anti-inflammatory 

properties.  Doxycycline, a member of the tetracycline family is able to reduce 

neutrophil chemotaxis [72] and nitric oxide production from murine lung epithelial 

cells [73].  More pertinently, doxycycline can also inhibit MMP synthesis from 

human endothelial cells [74]. As MMPs have been well regarded as targets for 

tetracycline antibiotics in disease [75], there is increasing interest for inhibiting 

MMPs by these agents.  Recent ex vivo data suggests that this class of antibiotic may 

effectively reduce MMP activity in CF sputum [28]. A single centre randomized-

controlled clinical trial is currently planned to examine these effects in an adult 

inpatient CF population in the United States (Clin Trials.gov #NCT01112059, PI 

Gaggar). 
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FIGURE LEGENDS 

Figure 1 

Predicted effects of MMPs (depicted as ovals with scissors) activities in the context of 

cystic fibrosis. A) MMP-2 disrupts chloride current, and inhibition of MMP-2 

abrogates this effect. B) MMP-7 functions to repair damage in airway epithelia.  C)  

MMP-8/9 are able to cleave collagen and modify ELR+ CXC chemokines which 

modulate inflammation in the airways.  D) Decreased airway surface liquid (ASL) 

activates macrophages and increases expression of MMP-12, which cleaves elastin 

resulting in degradation of the airway and lung parenchyma.  These elastin fragments 

may also increase the recruitment of monocytes and  activation of macrophages. 
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TABLES:   Table 1 

 IntEnz 
Number Alternative Name Molecular 

Weight 

Location of 
Expression in 

Airways 

Expression in Cystic 
Fibrosis 

Predicted Role in Cystic 
Fibrosis References 

MMP-2 EC 3.4.24.24 Gelatinase A 
72 kDa pro, 64 

active 

Structural cells 

(epithelia, 

endothelium) and 

macrophages 

Detected in BAL fluid, 

not detected in sputum, 

decreased in serum 

during exacerbation 

Regulation of ion transport, 

increasing remodeling and 

inflammatory response 

[26], [27], [28], 

[29] 

MMP-7 EC 3.4.24.23 Matrilysin 
28 kDa pro, 19 

active 

Epithelial cells 

predominately 

Elevated in airway 

epithelia 
Possible role in injury/repair [37] 

MMP-8 EC 3.4.24.34 
Neutrophil 

Collagenase 
75 pro, 65 active

Neutrophils and 

epithelia 

Elevated in serum and 

levels negatively 

correlated with lung 

function, elevated in 

BAL fluid 

Modulation of inflammatory 

response, airway 

remodeling, generation of 

bioactive collagen fragments

[30], [50], [51] 



 16 

MMP-9 EC 3.4.24.35 Gelatinase B 92 pro, 82 active

Predominately 

neutrophils but also 

structural cells 

(epithelia, 

endothelium) and 

macrophages 

Elevated in lower 

airway secretions and 

negatively correlated 

with lung function, 

elevated in serum 

Modulation of inflammatory 

response , airway 

remodeling, generation of 

bioactive collagen fragments

[30], [51], [52], 

[56] 

MMP-12 EC 3.4.24.65 
Macrophage 

Elastase 
54 pro, 45 active Macrophages 

Detected in sputum 

and serum of CF 

patients 

Possible role in airway and 

parenchymal remodeling, 

possible role in generating 

bioactive elastin fragments 

[28], [30], [65] 
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