European Respiratory Society Annual Congress 2012 **Abstract Number: 3251** **Publication Number: P3411** **Abstract Group:** 3.2. Airway Cell Biology and Immunopathology Keyword 1: Cell biology Keyword 2: ALI (Acute Lung Injury) Keyword 3: ARDS (Acute Respiratory Distress Syndrome) Title: Sodium transport mediated by concentration-sensitive sodium channel in mouse alveolar epithelium Dr. Teruki 13795 Hagiwara hagi@life.kindai.ac.jp ¹ and Prof. Dr Shigeru 13796 Yoshida physiology@life.kindai.ac.jp MD ¹. ¹ Department of Life Science, School of Science and Engineering, Kinki University, Higashiosaka, Osaka, Japan, 577-8502 . Body: Introduction: The concentration-sensitive Na+ channel (Na_C), a member of the family of voltage-dependent Na+ channels, opens in response to increased Na+ concentration in the extracellular fluid ([Na⁺]_o). Although the expression of Na_C in alveolar epithelial type II (AT II) cells has been reported, the physiological role of Na_C in lung tissue has not yet been established. Various ion channels in the alveolar epithelium are involved in maintaining the alveolar fluid balance; therefore, we hypothesized that Na_C-mediated Na⁺ transport contributes to the clearance of Na⁺ from the alveolar fluid. In this study, we examined Na_C distribution in mouse lung tissue and the [Na+]_o-dependent influx of Na+ into mouse alveolar epithelium. Methods: We used immunohistochemistry and immunofluorescence to study mouse lung tissue using antibodies against Na_C and other ion transport proteins. In situ hybridization was performed using a digoxigenin-labeled antisense probe for Na_C mRNA. Na+ dynamics in mouse alveolar epithelium were analyzed using sodium-binding benzofuran isophthalate and an image analyzer Argus-50. Results: The alveolar epithelial type I (AT I) cells showed positive staining with anti-Na_C antibodies. Similarly, Na_C mRNA signals were detected in the AT I cells by in situ hybridization. Confocal laser scanning microscopy showed the presence of Na_C in the cell membrane of the AT I cells. Na_C was partially colocalized with γ epithelial sodium channels (ENaC). Results of image analysis showed that Na+ influx into alveolar epithelium was dependent on elevation of [Na⁺]_o. Conclusions: These findings suggest that Na_C, expressed in AT I cells, is involved in Na+ transport in the alveolar epithelium.